Skip to main content
Log in

Theoretical and experimental research on the in-plane comb-shaped capacitor for MEMS coriolis mass flow sensor

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The Micro-Electro-Mechanical System Coriolis mass flow sensor uses a kind of in-plane comb-shaped capacitor to detect the vibration of tube containing the micro flow information. This paper takes the deflection of the micro tube caused by Coriolis force into account and models the in-plane comb-shaped capacitor of the sensor based on the electrostatic field method. Then the modulation and demodulation of the output capacitive signals are described in detail. The theoretical waveforms obtained by substituting the actual parameters into the models are consistent with the accepted conformal mapping method and match with the sampling signals, which attest the two models. According to the actual flow calibration experiment and the preliminary phase shift calculation, the measurement accuracy of the micro flow sensor reaches ±1.5 % with the repeatability of 0.75 % within 0–1.2 g/h flow range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Anklin M, Drahm W, Rieder A (2006) Coriolis mass flow meters: overview of the current state of the art and latest research. Flow Meas Instrum 17(6):317–323

    Article  Google Scholar 

  • Bruschi P, Nannini A, Pieri F (2004) Electrostatic analysis of a comb-finger actuator with Schwarz-Christoffel conformal mapping. Sensor Actuator A Phys 113(1):106–117

    Article  Google Scholar 

  • Cattaneo PW (2010) Capacitances in micro-strip detectors: a conformal mapping approach. Solid State Electron 54(3):252–258

    Article  MathSciNet  Google Scholar 

  • Droogendijk H, Groenesteijn J, Haneveld J et al (2012) Parametric excitation of a micro Coriolis mass flow sensor. Appl Phys Lett 101(22):223511–223513

    Article  Google Scholar 

  • Enoksson P, Stemme G, Stemme E (1997) A silicon resonant sensor structure for Coriolis mass-flow measurements. J Microelectromech Syst 6(2):119–125

    Article  Google Scholar 

  • Groenesteijn J, Lammerink TSJ, Wiegerink RJ et al (2012) Optimization of a micro Coriolis mass flow sensor using Lorentz force actuation. Sensor Actuator A Phys 186(10):48–53

    Article  Google Scholar 

  • Guirguis S, Fan S (2010) Modeling of Coriolis mass flow meter of a general plane-shape pipe. Flow Meas Instrum 21(1):40–47

    Article  Google Scholar 

  • Haneveld J, Lammerink TSJ, de Boer MJ et al (2009) Micro Coriolis mass flow sensor with integrated capacitive readout. In: Proceeding of the 22nd IEEE international conference on micro electro mechanical systems(MEMS). pp 463–466

  • Haneveld J, Lammerink TSJ, de Boer MJ et al (2010) Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor. J Micromech Microeng 20(12)

  • Liu S, Shi H, Yan J et al (2012) An interpolation FFT algorithm with high accuracy. Adv Mater Res 524–527:3838–3844

    Google Scholar 

  • Ren M, Zhang H, Liu X (2014) High resolution capacitance detection circuit for rotor micro-gyroscope. Aip Adv 4(3)

  • Sankar AR, Bindu V, Das S (2011) Coupled effects of gold electroplating and electrochemical discharge machining processes on the performance improvement of a capacitive accelerometer. Microsyst Technol 17(10–11):1661–1670

    Article  Google Scholar 

  • Saukoski M, Aaltonen L, Salo T et al (2008) Interface and control electronics for a bulk micromachined capacitive gyroscope. Sensor Actuator A Phys 147(1):183–193

    Article  Google Scholar 

  • Smith R, Sparks DR, Riley D (2009) A MEMS-based Coriolis mass flow sensor for industrial application. IEEE T Ind Electron 56(4):1066–1071

    Article  Google Scholar 

  • Soria FC, Badillo IA, Torres GF et al (2013) A simplification to the fast FIR-FFT filtering technique in the DSP interpolation process for band-limited signals. Rev Fac Ing-univ Ant 68:9–19

    Google Scholar 

  • Sparks D, Smith R, Massoud-Ansari S et al (2004) Coriolis mass flow, density and temperature sensing with a single vacuum sealed MEMS chip. Solid-state sensor, actuator and microsystems workshop. Hilton Head Island, South Carolina, pp 75–78

  • Tan S, Liu C, Yeh L et al (2011) An integrated low-noise sensing circuit with efficient bias stabilization for CMOS MEMS capacitive accelerometers. IEEE T Circuits 58(11):2661–2672

    Article  MathSciNet  Google Scholar 

  • Thomsen JJ, Dahl J (2010) Analytical predictions for vibration phase shifts along fluid-conveying pipes due to Coriolis forces and imperfections. J Sound Vib 329(15):3065–3081

    Article  Google Scholar 

  • Wang LJ, Hu L, Zhu ZC (2011) Analytical calculation of sensitivity for Coriolis mass flowmeter. Measurement 44(6):1117–1127

    Article  Google Scholar 

  • Wiegerink RJ, Lammerink TSJ, Dijkstra M et al (2009) Thermal and Coriolis type micro flow sensors based on surface channel technology. Procedia Chem 1(1):1455–1458

    Article  Google Scholar 

  • Xiang Y (2006) The electrostatic capacitance of an inclined plate capacitor. J Electrostat 64(1):29–34

    Article  Google Scholar 

  • Xiang Y (2008) Further study on electrostatic capacitance of an inclined plate capacitor. J Electrostat 66(7–8):366–368

    Article  Google Scholar 

  • Yamada T (2013) High-accuracy estimations of frequency, amplitude, and phase with a modified DFT for asynchronous sampling. IEEE T Instrum Meas 62(6):1428–1435

    Article  Google Scholar 

  • Zhang B, Hu H (2010) An improved window and interpolation algorithm using trispectrum for measuring power harmonics based on FFT. In: Proceeding of the 2010 1st international conference on pervasive computing, signal processing and applications (PCSPA). Harbin, pp 491–494

Download references

Acknowledgments

This work is supported by TransCentury Training Programme Foundation for the Talents of Humanities and Social Science by the State Education Commission, Young Talents Program of University in Beijing, the Program for Changjiang Scholars and Innovative Research Team in University (IRT1203), and the National Nature Science Fund of China (61121003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Zhanshe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Zheng, D., Fan, S. et al. Theoretical and experimental research on the in-plane comb-shaped capacitor for MEMS coriolis mass flow sensor. Microsyst Technol 22, 747–755 (2016). https://doi.org/10.1007/s00542-015-2441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2441-7

Keywords

Navigation