Skip to main content
Log in

Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A tunable metamaterial, derived from the combination of two-hot-arm electrothermal actuators with a split-ring resonator, is introduced in this paper. Accomplishing a reliable control of the tip displacement, the selected set of radio-frequency microelectromechanical systems (RF-MEMS) circumvent the undesired bandwidth constraints of existing structures and establish significant levels of reconfigurability. To this objective, the aforementioned actuator is realized as an integrated part of the resonator, while a modified scheme for lower-frequency operation is also developed. Moreover, a double actuated device is proposed to further reduce the bias network complexity. A multiphysics analysis is conducted to reveal the characteristics of the associated RF-MEMS components prior embedding them to any complex medium. The featured designs are numerically verified through an assortment of setups, which utilize the finite element method to extract the constitutive parameters of the proposed metamaterials. Simulation data successfully prove their bandwidth enhancement capability, as well as the controllable mu-negative performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Caloz C, Chang CC, Itoh T (2001) Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations. J Appl Phys 90(11):5483–5486

    Article  Google Scholar 

  • Chen X, Grzegorczyk TM, Wu BI, Pacheco J, Kong JA (2004) Robust method to retrieve the constitutive effective parameters of metamaterials. Phys Rev E 70(1):016608

    Article  Google Scholar 

  • Cowen A, Hardy B, Mahadevan R, Wilcenski S (2011) PolyMUMPs design handbook. MEMSCAP Inc. http://www.memscap.com/__data/assets/pdf_file/0019/1729/PolyMUMPs-DR-13-0.pdf. Accessed 25 June 2014

  • Fan K, Zhao X, Zhang J et al (2013) Optically tunable terahertz metamaterials on highly flexible substrates. IEEE Trans THz Sci Technol 3(6):702–708

    Article  Google Scholar 

  • Gil M, Damm C, Giere A et al (2009) Electrically tunable split-ring resonators at microwave frequencies based on barium–strontium–titanate thick films. Electron Lett 45(8):1362

    Article  Google Scholar 

  • Girbau D, Llamas M et al (2007) A low-power-consumption out-of-plane electrothermal actuator. IEEE J Microelectromech Sys 16:719–727

    Article  Google Scholar 

  • Han JG, Lakhtakia A, Qiu CW (2008) Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability. Opt Express 16(19):14390

    Article  Google Scholar 

  • He X-J, Wang Y, Wang J-M, Gui T-L (2010) MEMS switches controlled multi-split ring resonator as a tunable metamaterial component. Microsyst Technol 16:1831–1837

    Article  Google Scholar 

  • Ho CP, Pitchappa P, Lin Y-S et al (2014) Electrothermally actuated microelectromechanical systems based omega-ring terahertz metamaterial with polarization dependent characteristics. Appl Phys Lett 104:161104

    Article  Google Scholar 

  • Li J, Shah CM, Withayachumnankul W et al (2013a) Mechanically tunable terahertz metamaterials. Appl Phys Lett 102:121101

    Article  Google Scholar 

  • Li X, Yang T, Zhu W, Li X (2013b) Continuously tunable terahertz metamaterial employing a thermal actuator. Microsyst Technol 19(8):1145–1151

    Article  Google Scholar 

  • Lin Y-S, Qian Y, Ma F et al (2013) Development of stress-induced curved actuators for a tunable THz filter based on double split-ring resonators. Appl Phys Lett 102:111908

    Article  Google Scholar 

  • Liu AQ, Zhu WM, Tsai DP, Zheludev NI (2012) Micromachined tunable metamaterials: a review. J Opt 14:114009

    Article  Google Scholar 

  • Lucyszyn S (ed) (2010) Advanced RF MEMS, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Lugo C, Wang G, Papapolymerou J et al (2007) Frequency and bandwidth agile millimeter-wave filter using ferroelectric capacitors and MEMS cantilevers. IEEE Trans Microw Theory Tech 55:376–382

    Article  Google Scholar 

  • Ma F, Lin Y-S, Zhang X, Lee C (2014) Tunable multiband terahertz metamaterials using a reconfigurable electric split-ring resonator array. Light Sci Appl 3:1–8

    Article  Google Scholar 

  • Manceau JM, Shen NH, Kafesaki M et al (2010) Dynamic response of metamaterials in the terahertz regime: blueshift tunability and broadband phase modulation. Appl Phys Lett 96:021111

    Article  Google Scholar 

  • Nikolaenko AE, De Angelis F, Boden SA et al (2010) Carbon nanotubes in a photonic metamaterial. Phys Rev Lett 104:153902

    Article  Google Scholar 

  • O’Hara JF, Singh R, Brener I et al (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16:1786–1795

    Article  Google Scholar 

  • Paul O, Imhof C, Lägel B et al (2009) Polarization-independent active metamaterial for high-frequency terahertz modulation. Opt Express 17(20):819

    Article  Google Scholar 

  • Rebeiz GM (eds)(2003) RF MEMS: theory, design, and technology, 1st ed. Wiley, New Jersey

  • Scher A, Kuester E (2009) Extracting the bulk effective parameters of a metamaterial via the scattering from a single planar array of particles. Metamaterials 3:44–55

    Article  Google Scholar 

  • Singh R, Al-Naib IAI, Koch M, Zhang W (2010) Asymmetric planar terahertz metamaterials. Opt Express 18:13044–13050

    Article  Google Scholar 

  • Solymar L, Shamonina E (eds) (2009) Waves in Metamaterials, 1st edn. Oxford University Press Inc, New York

    Google Scholar 

  • Tanoto H, Ding L, Teng JH (2013) Tunable terahertz metamaterials. IEEE Trans THz Sci Technol 6(1):1–25

    Google Scholar 

  • Tao H, Strikwerda AC, Fan K et al (2009) Reconfigurable terahertz metamaterials. Phys Rev Lett 103:147401

    Article  Google Scholar 

  • Wang DX, Ran LX, Chen HS, Mu MK (2007) Active left-handed material collaborated with microwave varactors. Appl Phys Lett 91:164101

    Article  Google Scholar 

  • Wang J, Qu S, Zhang J et al (2009) A tunable left-handed metamaterial based on modified broadside-coupled split-ring resonators. Prog Electromagn Res Lett 6:35–45

    Article  Google Scholar 

  • Xiao SM, Chettiar UK, Kildishev AV et al (2009) Tunable magnetic response of metamaterials. Appl Phys Lett 95:033115

    Article  Google Scholar 

  • Yan D, Khajepour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13:312–322

    Article  Google Scholar 

  • Zhang FL, Kang L, Zhao Q et al (2009) Magnetically tunable left-handed metamaterials by liquid crystal orientation. Opt Express 17(6):4360–4366

    Article  Google Scholar 

  • Zhang W, Zhu WM, Cai H et al (2013) Resonance switchable metamaterials using MEMS fabrications. IEEE J Sel Topics Quant Electr 19(3)

  • Zhang W, Zhu WM, Tsai JM et al (2013b) THz polarizer using tunable metamaterials. Proc 26th Int Conf on MEMS, Taipei, Taiwan

  • Zhao J, Cheng Q, Chen J et al (2013) A tunable metamaterial absorber using varactor diodes. New J Physics 15:043049

    Article  Google Scholar 

  • Zhu WM, Cai H, Bourouina T et al (2010) A MEMS tunable metamaterial filter. Proc 23rd Int Conf on MEMS:196–199, Hong Kong, China

  • Zhu WM, Liu AQ, Zhang XM et al (2011) Switchable magnetic metamaterials using micromachining processes. Adv Mater 23(15):1792–1796

    Article  Google Scholar 

  • Zhu WM, Liu AQ, Bourouina T et al (2012) Microelectromechanical maltese-cross metamaterial with tunable terahertz anisotropy. Nature Communications 3:1274

    Article  Google Scholar 

Download references

Acknowledgments

This research has been cofinanced by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Aristeia I. Investing in knowledge society through the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros D. Tsiboukis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lalas, A.X., Kantartzis, N.V. & Tsiboukis, T.D. Reconfigurable metamaterial components exploiting two-hot-arm electrothermal actuators. Microsyst Technol 21, 2097–2107 (2015). https://doi.org/10.1007/s00542-015-2407-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2407-9

Keywords

Navigation