Skip to main content
Log in

Detection principles and development of microfluidic sensors in the last decade

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Microfluidic sensor converts a physical quantity to useful signal with the help of microfluidic platform. Microfluidic sensors have got a wide attention in the last decade because of the increased demands from the automation and control in microsystems. This review on microfluidic sensors focuses on various types of sensors which have been developed for the microfluidic systems or applications based on the research contributions in the last decade. We start with a detailed comparison on the research developments in the last decade on microfluidic sensors with the help of year and country wise statistical charts on published works in the area. The review continues with the basics of microfluidic sensors and the working principles of microfluidic sensors by classifying various microfluidic sensors based on the parameter to be sensed. This review concludes with the attempt to provide an idea on research gap in the area of microfluidic sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alexander DB, Vincent JS, Cedric FAF, Edward MW, Samer AKB, Iain RGO, Matthew CM, Hywel M (2011) An automated microfluidic colorimetric sensor applied in situ to determine nitrite concentration. Sens Actuat B Chem 156:1009–1014

    Article  Google Scholar 

  • Angela R, Mona EZ (1999) The design and fabrication of microfluidic flow sensors. In: Proceedings of the 1999 IEEE International Symposium on Circuits and Systems (ISCAS ‘99), vol. 5, p 136

  • Antonio JR, Gordon CO, Robert CH, Richard MC, Travis DB (2000) Gas sensor arrays for vapour analysis and microfluidic arrays for bio-analysis: size does matter. In: Proceedings of 198th Meeting on Microsensor Systems for Gas and Vapor Analysis—Phoenix, Arizona, October 22–27, 2000, p 1

  • Benecke W, Meckes A (1998) A smart gas sensing microsystem, In: Proceedings of ISIE ‘98-IEEE International Symposium on Industrial Electronics, vol 1, 7–10 Jul 1998, p 263

  • Benito-Lopez F, Coyle S, Byrne R, Alan S, O’Connor NE, Diamond D (2009) Pump less wearable microfluidic device for real time pH sweat monitoring. Procedia Chem 1:1103–1106

    Article  Google Scholar 

  • Bousse L, de Rooij NF, Bergveld P (1983) Operation of chemically sensitive field-effect sensors as a function of the insulator-electrolyte interface. IEEE Trans Electron Devices 30:1263–1270

    Article  Google Scholar 

  • Broadbent HA, Ivanov SZ, Fries DP (2007) A miniature low cost CTD system for coastal salinity measurements. Meas Sci Technol 18:3295–3302

    Article  Google Scholar 

  • Chang-Soo K, Jongwon P (2005) Influence of oxygen microenvironment on microfluidic glucose sensor performance. In: Proceedings of the 3rd Annual International IEEE EMBS Special Topic Conference on Microtechnologies in Medicine and Biology Kahuku, Oahu, Hawaii u 12–15 May 2005, p 26

  • Cheng D, Lin IH, Abbott NL, Jiang H (2009) Autonomous microfluidic sensing device employing liquid crystal for detection of biological interactions. In: Proceedings of Transducers 2009, Denver, CO, USA, June 21–25

  • Chenl HT, Ko HS, Gau C (2009) The study of polymer pressure sensor by nanocomposites with MWNT and its characteristics testing. In: Proceedings of the IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering October 18–21, 2009, Tainan, Taiwan, pp 243–248

  • Christian H, Erin EM, Josef G, Kimberly LP, Song-IH, Alexander P (2005) Microfluidic gas-flow profiling using remote-detection NMR. In: Proceedings of the National Academy of Sciences, 18 Oct, vol. 102, no. 42, pp 14960–14963

  • Cooney CG, Towe BC (2004) Evaluation of microfluidic blood gas sensors that combine microdialysis and optical monitoring. Med Biol Eng Comput 42:720–724

    Article  Google Scholar 

  • Datta A, Choi H, Liz X (2006) Batch fabrication and characterization of micro-thin-film thermocouples embedded in metal. J Electrochem Soc 153:H89–H93

    Article  Google Scholar 

  • David AC, Bojan RI, Maxim Z, William LO, Alan TZ, Harold GC, Terry AM (2004) A micromechanical flow sensor for microfluidic applications. J Microelectromech Syst 13:576–585

    Article  Google Scholar 

  • Demoria M, Ferrari V, Farisè S, Poesio P, Pedrazzani R, Steimberg N, Boniotti J, Mazzoleni G (2012) Microfluidic sensor for noncontact detection of cell flow in a microchannel. Procedia Eng 47:1247–1250

    Article  Google Scholar 

  • Dijkstra M, de Boer MJ, Berenschot JW, Lammerink TSJ, Wiegerink RJ, Elwenspoek M (2007) Miniaturized flow sensor with planar integrated sensor structures on semicircular surface channels. In: Proceedings of IEEE 20th International Conference on Micro Electro Mechanical Systems, 21–25 Jan 2007, pp 123–126

  • Dijkstra M, Lammerink TSJ, de Boer MJ, Berenschot JW, Wiegerink RJ, Elwenspoek MC (2008) Low-drift U-shaped thermopile flow sensor. In: Proceedings of IEEE Sensors Conference, p 66

  • Djibril F, Jean-Pierre L, Jacques AD, Isabelle L (2012) A selective lead sensor based on a fluorescent molecular probe grafted on a PDMS microfluidic chip. J Photochem Photobiol A 234:115–122

    Google Scholar 

  • Du L, Zhe J (2011) A Microfluidic inductive pulse Sensor for Real Time Detection of machine wear. In: Proceedings of IEEE 24th Conference on MEMS, Cancun, MEXICO, January pp 23–27

  • Ferenc E, Hunor S, Vladimir S (2009) Flow sensor for microfluidic applications—based on standard PWB technology. In: Proceedings of 32nd International Spring Seminar on Electronics Technology, 13–17 May 2009, p 1

  • Ferenc E, Hunor S, Vladimír S (2010) Optimization of microfluidic flow sensors for different flow ranges by FEM simulation. In: Proceedings of 33rd International Spring Seminar on Electronics Technology, 12–16 May 2010, p 308

  • Haixia Y, Dachao L, Kexin X, Robert CR, Norman CT (2010) A micro flow sensor for volumetric measurement of conductive fluids. In: Proceedings of Advances in Optoelectronics and Micro/Nano-Optics (AOM), 3–6 Dec 2010, p 1

  • Hesam B, Vaishnavi S, Masoud A (2012) Microfluidic chip bio-sensor for detection of cancer cells. Sensors 12:1–4

    Google Scholar 

  • Hyldgard A, Birkelund K, Janting J, Thomsen EV (2008) Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept. Sens Actuators A 142:398–404

    Article  Google Scholar 

  • Jan L, Andreas H (2005) Liquid-core, piezoresistive, fully polymer-based pressure sensor, solid-state sensors, actuators and microsystems, digest of technical papers. In: Proceedings of the 13th International Conference on Transducers ‘05, 5–9 June 2005, p 491

  • Jianbin W, Matthew S, Susan ZH (2007) Electrolytic-bubble-based flow sensor for microfluidic systems. J Microelectromech Syst 16:1087–1094

    Article  Google Scholar 

  • Jin S, Dai M, Ye B, Nugen SR (2013) Development of a capillary flow microfluidic Escherichia coli biosensor with on-chip reagent delivery using water-soluble nanofibers. Microsyst Technol 19:2011–2015

    Article  Google Scholar 

  • John C, Conor S, Dermot D (2007) Field-deployable microfluidic sensor for phosphate in natural waters. Sensors 7:1001–1004

    Google Scholar 

  • John C, Conor S, McGraw C, Dermot D (2008) An autonomous microfluidic sensor for phosphate: on-site analysis of treated wastewater. Sensors 8:508–515

    Article  Google Scholar 

  • John PH, Thai HN, Renjun P, Milan SV, Qiao L (2009) A Microfluidic affinity cocaine sensor. In: Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems, 25–29 Jan 2009, p 344

  • John C, Damien M, Conor S, Dermot D (2010) In situ monitoring of environmental water quality using an autonomous microfluidic sensor. In: Proceedings of IEEE Sensors Applications Symposium (SAS), 23–25 Feb, pp 36–40

  • Juesung J, Steven TW (2004) A capacitive micro gas flow sensor based on slip flow. In: Proceedings of the 17th IEEE International Conference on Micro Electro Mechanical Systems, p 540

  • Jun W, Michihiko A, Daisuke O, Kenji A, Noritada K, Manabu T, Shozo F, Naoki Y, Yoshinobu B (2014) Microfluidic biosensor for the detection of DNA by fluorescence enhancement and the following streptavidin detection by fluorescence quenching. Biosens Bioelectron 51:280–285

    Article  Google Scholar 

  • Jung-Chuan C, Guan-Chen Y, Da-Gong W, Chien-Cheng C (2012) Fabrication of the array chlorine ion sensor based on microfluidic device framework. Solid State Electron 77:87–92

    Article  Google Scholar 

  • Kai Z, Li-Bo Z, Shi-Shang G, Bao-Xian S, Tin-Lun L, Yun-Chung L, Yong C, Xing-Zhong Z, Helen LWC, Yu W (2010) A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells. Biosens Bioelectron 26:935–939

    Article  Google Scholar 

  • Kazunari O, Jeesoo L, Simon S, Masahiko H, Mizuo M (2013) Microfluidic gas sensing with living microbial cells confined in a micro aquarium. Key Eng Mat 543:431–434

    Article  Google Scholar 

  • Le Huy N, Hai BN, Ngoc TN, Tuan DN, Dai LT (2012) Portable cholesterol detection with polyaniline-carbon nanotube film based interdigitated electrodes. Adv Nat Sci Nanosci Nanotechnol 3:015004

    Article  Google Scholar 

  • Li Y, Sun JZ, Bian C, Tong JH, Xia SH (2011) A Microfluidic Sensor Chip with renewable In-situ copper modified microelectrode for Continuous Monitoring of Nitrate. In: Proceedings of IEEE Conference on Transducers’11, Beijing, China, June 5–9

  • Marco D, Vittirio F, Pietro P (2010) A microfluidic capacitance sensor for fluid discrimination and characterization. Procedia Eng 5:408–411

    Article  Google Scholar 

  • Martini V, Bernardini S, Bendahan M, Aguir K, Perrier P, Graur I (2012) Microfluidic gas sensor with integrated pumping system. Sensor Actuat B-Chem 170:45–50

  • Mohammad P, Vahid G, Faramarz HB (2012) A microfluidic gas analyzer for selective detection of biomarker gases. In: Proceedings of Sensors Applications Symposium (SAS), 2012 IEEE, 7–9 Feb, pp 1–5

  • Mohd NMN, Asrulnizam AM, Mohd RA, Othman S (2012a) Modeling of biomimetic flow sensor based fish dome shaped cupula using PDMS for underwater sensing. In: Proceedings of ICSE2012, Kuala Lumpur, Malaysia, p 234–237

  • Mohd NMN, Asrulnizam AM, Mohd RA, Othman S (2012b) Numerical simulation of the microchannel for the microfluidic based flow sensor. In: Proceedings of IEEE International Conference on Control System, Computing and Engineering, 23–25 Nov 2012, Penang, Malaysia, p 345

  • Myounggon K, Wooyeol C, Hyuk L, Sung Y (2013) Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination 317:166–174

    Article  Google Scholar 

  • Patsis GP, Petropoulos A, Kaltsas G (2012) Modelling and evaluation of a thermal microfluidic sensor fabricated on plastic substrate. Microsyst Technol 18:359–364

    Article  Google Scholar 

  • Pereira RN, Sakai Y, Fujii T (2008) Cell-based microfluidic biochip for the electrochemical real-time monitoring of glucose and oxygen. Sens Actuators B 132:608–613

    Article  Google Scholar 

  • Rérolle VM, Floquet CF, Harris AJ, Mowlem MC, Bellerby RR, Achterberg EP (2013) Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements. Anal Chim Acta 786:124–131

    Article  Google Scholar 

  • Ruben DPW, Jonathan DP, Veronica JS (2012) Flexible microfluidic normal force sensor skin for tactile feedback. Sens Actuator A Phys 179:62–69

    Article  Google Scholar 

  • Sara T, Rolf L, Jonas B, Fredrik N, Javier S (2008) A PDMS-based disposable microfluidic sensor for CD4+ lymphocyte counting. Biomed Microdevices 10:851–857

    Article  Google Scholar 

  • Seung JL, Jae SP, Hee TI, Hyo-Il J (2008) A microfluidic ATP-bioluminescence sensor for the detection of airborne microbes. Sens Actuat B 132:443–448

    Article  Google Scholar 

  • Smetana W, Unger M (2008) Design and characterization of a humidity sensor realized in LTCC-technology. Microsyst Technol 14:979–987

    Article  Google Scholar 

  • Sumetsky M, Dulashko Y, Windeler RS (2008) Temperature and pressure compensated microfluidic optical sensor, lasers and electro-optics. In: Proceedings of Conference on Quantum Electronics and Laser Science, CLEO/QELS 2008. 4–9 May 2008, p 1

  • Suzuki T, Teramura Y, Hata H, Inokuma K, Kanno I, Iwata H, Kotera H (2007) Development of a micro biochip integrated traveling wave micropumps and surface plasmon resonance imaging sensors. Microsyst Technol 13:1391–1396

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Winnie WYC, Wen JL, Steve CHT (2008) Integrated CNT sensors in polymer microchannel for gas-flow shear-stress measurement. In: Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems January 6–9, 2008, Sanya, China, p 1011

  • Wisitsoraat A, Sritongkham P, Karuwan C, Phokharatkul D, Maturos T, Tuantranont A (2010) Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Biosens Bioelectron 26:1514–1520

    Article  Google Scholar 

  • Wu S, Mai J, Zohar Y, Tail YC, Ho CM (1998) A suspended microchannel with integrated temperature sensors for high-pressure flow studies. In: Proceedings of the 11th Annual International Workshop on Micro Electro Mechanical Systems (MEMS 98), 25–29 Jan 1998, p 87

  • Wu S, Lin Q, Yuen Y, Tai YC (2000) MEMS flow sensors for nano-fluidic applications. In: Proceedings of the 30th Annual International Conference on Micro Electro Mechanical Systems, 23–27 Jan 2000, p 745

  • Xinghua Y, Yao Z, Shenzi L, Yanxin L, Libo Y (2013) Microfluidic in-fiber oxygen sensor derivates from a capillary optical fiber with a ring-shaped waveguide. Sens Actuators B 182:571–575

    Article  Google Scholar 

  • Yanli Q, Winnie WYC, Mengxing O, Steve CHT, Wen JL, Xuliang H (2008) Ultra-low-powered aqueous shear stress sensors based on bulk EG-CNTs integrated in microfluidic systems. IEEE Trans Nanotechnol 7:565–572

    Article  Google Scholar 

  • Ye H, van ZH, Sokolovskij R, Gielen AWJ, Zhang GQ (2013) Advanced LED package with temperature sensors and microfluidic cooling. In: Proceedings of 63rd IEEE Conference on Electronic Components and Technology Conference (ECTC), 28–31 May 2013, p 1920

  • Yen-Heng L, Shih-HaoW Min-HsienW, Tung-Ming P, Chao-Sung L, Ji-Dung L, Chiuan-Chian C (2013) Integrating solid-state sensor and microfluidic devices for glucose, urea and creatinine detection based on enzyme- carrying alginate microbeads. Biosens Bioelectron 43:328–335

    Article  Google Scholar 

  • Young JK, John EJ, Hao L, Helen YI, Guolu Z, Charles AC, Michael C, Michael S, Qingsong Y (2013) Three-dimensional (3-D) microfluidic-channel-based DNA biosensor for ultra-sensitive electrochemical detection. Electroanal Chem 702:72–78

    Article  Google Scholar 

  • Yu H, Li D, Roberts CR, Xu K, Tien NC (2013) A micro PDMS flow sensor based on time-of-flight measurement for conductive liquid. Microsyst Technol 19:989–994

    Article  Google Scholar 

  • Yukimitsu S, Yoshikazu Y, Takehiko K (2004) Pressure sensor for micro chemical system on a chip. In: Proceedings of IEEE Sensors, 24–27 Oct 2004 1: 516–519

  • Zhao-Xin G, Hai-Fang L, Jiangjiang L, Jin-Ming L (2008) A simple microfluidic chlorine gas sensor based on gas–liquid chemiluminescence of luminol-chlorine system. Anal Chim Acta 622:143–149

    Article  Google Scholar 

  • Zhu L, Kimball C, Sniadeck N, Beamesderfer M, Semancik S, DeVoe DL (2003) Integrated microfluidic gas sensors for water monitoring. In: Proceedings of 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems, October 5–9, 2003, Squaw Valley, California USA, pp 1231–1234

  • Zhuoqing Y, Yi Z, Toshihiro I (2012) Development of an implantable micro temperature sensor fabricated on the capillary for biomedical and microfluidic monitoring. Sensors 12:1–4

    Google Scholar 

Download references

Acknowledgments

The financial support of National Institute of Technology Calicut, India (Faculty Research Grant Scheme, Grant No: Dean (C&SR)/FRG10-11/0102) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Selvaraju.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antony, R., Giri Nandagopal, M.S., Sreekumar, N. et al. Detection principles and development of microfluidic sensors in the last decade. Microsyst Technol 20, 1051–1061 (2014). https://doi.org/10.1007/s00542-014-2165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-014-2165-0

Keywords

Navigation