Skip to main content

Advertisement

Log in

Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Piezoelectric vibration energy harvesters as an autonomous power source for various types of sensors, actuators and MEMS devices have attracted increasing attention in recent years. Traditional MEMS-based PZT single beam vibration energy harvester has low voltage output (usually <1 V) which causes rectifier circuit to consume most of power or turn off in practical applications. In this paper, in order to improve the voltage output of MEMS-based PZT vibration energy harvester as well as ensure high power output, a PZT beam array configuration for MEMS-based vibration energy harvester is proposed. Based on Hamilton’s principle and Euler–Bernoulli beam theory, mathematical model for the proposed vibration energy harvester is established. Two different dimensions MEMS-based PZT beam array vibration energy harvesters are designed and fabricated through micro-fabrication techniques. The performances of the two types of fabricated vibration energy harvesters are characterized and compared with traditional vibration energy harvester in experiment. Experimental results agree well with theoretical analysis, and the experimental results show that the better performance fabricated vibration energy harvester can generate 121.4 μW and 3.5 V respectively at 1 g acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (2003c2006). Smart Mater Struct 16(3):R1

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175

    Article  Google Scholar 

  • Bertacchini A, Scorcioni S, Dondi D, Larcher L, Pavan P, Todaro MT, Campa A, Caretto G, Petroni S, Passaseo A (2011) Aln-based MEMS devices for vibrational energy harvesting applications. In: Solid-state device research conference (ESSDERC), 2011 Proceedings of the European, IEEE, pp 119–122

  • Defosseux M, Allain M, Defay E, Basrour S (2012) Highly efficient piezoelectric micro harvester for low level of acceleration fabricated with a cmos compatible process. Sens Actuators A: Phys 188:489–494

    Google Scholar 

  • Elfrink R, Kamel TM, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19(9):094005

    Article  Google Scholar 

  • Elfrink R, Matova S, de Nooijer C, Jambunathan M, Goedbloed M, van de Molengraft J, Pop V, Vullers R, Renaud M, van Schaijk R (2011) Shock induced energy harvesting with a MEMS harvester for automotive applications. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp 29.5.1–29.5.4

  • Elfrink R, Renaud M, Kamel TM, De Nooijer C, Jambunathan M, Goedbloed M, Hohlfeld D, Matova S, Pop V, Caballero L (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20(10):104,001

    Article  Google Scholar 

  • Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, NY

  • Giordano C, Ingrosso I, Todaro MT, Maruccio G, De Guido S, Cingolani R, Passaseo A, De Vittorio M (2009) Aln on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectron Eng 86(4):1204–1207

    Article  Google Scholar 

  • Hande A, Polk T, Walker W, Bhatia D (2007) Indoor solar energy harvesting for sensor network router nodes. Microprocess Microsyst 31(6):420–432

    Article  Google Scholar 

  • Jambunathan M, Elfrink R, Vullers R, van Schaijk R, Dekkers M, Broekmaat J (2012) Pulsed laser deposited-PZT based MEMS energy harvesting devices. In: Applications of ferroelectrics held jointly with 2012 European conference on the applications of polar dielectrics and 2012 International symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, applications of ferroelectrics held jointly with 2012 European Conference on the applications of polar dielectrics and 2012 International Symp piezoresponse force microscopy and nanoscale phenomena in polar materials (ISAF/ECAPD/PFM), 2012 Intl Symp, pp 1–4

  • Kim SB, Park H, Kim SH, Wikle HC, Park JH, Kim DJ (2013) Comparison of MEMS PZT cantilevers based on d 31 and d 33 modes for vibration energy harvesting. J Microelectromech Syst 22(1):1–8

    Article  Google Scholar 

  • Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2007) Degradation in the ferroelectric and piezoelectric properties of pb(zr,ti)o3 thin films derived from a MEMS microfabrication process. J Micromech Microeng 17(7):1238

    Article  Google Scholar 

  • Kobayashi T, Ichiki M, Kondou R, Nakamura K, Maeda R (2008) Fabrication of piezoelectric microcantilevers using lanio3 buffered pb (zr,ti)o3 thin film. J Micromech Microeng 18(3):035007

    Article  Google Scholar 

  • Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers. Smart Mater Struct 21(3):035,005

    Article  Google Scholar 

  • Muralt P, Polcawich RG, Trolier-McKinstry S (2009) Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34(09):658–664

    Article  Google Scholar 

  • Park JC, Khym S, Park JY (2013) Micro-fabricated lead zirconate titanate bent cantilever energy harvester with multi-dimensional operation. Appl Phys Lett 102(4):043901

    Article  Google Scholar 

  • Preumont A (2006) Mechatronics: dynamics of electromechanical and piezoelectric systems. Kluwer Academic Publishers, Springer, Dordrecht, Netherlands

  • Saadon S, Sidek O (2011) A review of vibration-based MEMS piezoelectric energy harvesters. Energy Convers Manag 52(1):500–504

    Article  Google Scholar 

  • Shen D, Park JH, Ajitsaria J, Choe SY, Wikle III, HC, Kim DJ (2008) The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated si proof mass for vibration energy harvesting. J Micromech Microeng 18(5):055017

    Article  Google Scholar 

  • Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle III, HC, Kim DJ (2009) Micromachined PZT cantilever based on soi structure for low frequency vibration energy harvesting. Sens Actuators A: Phys 154(1):103–108

    Article  Google Scholar 

  • Sodano HA, Inman DJ, Park G (2005) Comparison of piezoelectric energy harvesting devices for recharging batteries. J Intell Mater Syst Struct 16(10):799–807

    Article  Google Scholar 

  • Suzuki Y (2011) Recent progress in MEMS electret generator for energy harvesting. IEEE J Trans Electr Electron Eng 6(2):101–111

    Article  Google Scholar 

  • Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroceram 12(1):7–17

    Article  Google Scholar 

  • Ujihara M, Carman GP, Lee DG (2007) Thermal energy harvesting device using ferromagnetic materials. Appl Phys Lett 91(9):093508

    Google Scholar 

  • Wu WJ, Lee BS (2012) Piezoelectric MEMS power generators for vibration energy harvesting. In: Lallart M (ed) Small-scale energy harvesting. InTech, pp 156–157

  • Wu Y, Badel A, Formosa F, Liu W, Agbossou AE (2012) Piezoelectric vibration energy harvesting by optimized synchronous electric charge extraction. J Intell Mater Syst Struct 24(12):1445–1458

    Google Scholar 

  • Zhang J, Cao Z, Kuwano H (2011) Fabrication of low-residual-stress aln thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50(9):09ND18

    Article  Google Scholar 

  • Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. Sens J IEEE 11(2):481–488

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Doctoral Fund of Ministry of Education of China (No. 20090191110009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Deng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Z., Deng, L., Zhao, X. et al. Improving voltage output with PZT beam array for MEMS-based vibration energy harvester: theory and experiment. Microsyst Technol 21, 331–339 (2015). https://doi.org/10.1007/s00542-013-2052-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-2052-0

Keywords

Navigation