Skip to main content

Advertisement

Log in

Ferroelectric thin film fabrication by direct UV-lithography

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Due to their use in the fields of sensors, energy harvesting, capacitors and FeRAMs the fabrication of microstructured ferroelectric thin films is an important research field. Therefore a modified sol–gel process chain has been developed to produce fine patterned ferroelectric PZT (PbZr0.52Ti0.48O3) thin films by direct UV-lithography. A sol based on methacrylic acid was developed to provide a photosensitive metal organic PZT precursor. The sol was used to obtain photosensitive xerogel films by spin-coating, which were patterned using conventional UV-photolithography equipment. After development the patterned xerogel films were pyrolized and crystallized in air via rapid thermal annealing in order to obtain crystalline PZT thin films. The patterned PZT films were investigated by XRD technique and SEM-micrographs. Finely patterned, crack free, crystalline PZT thin films were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Akedo J, Park J, Tsuda H (2009) Fine patterning of ceramic thick layer on aerosol deposition by lift-off process using photoresist. J Electroceram 22:319–326

    Article  Google Scholar 

  • Alexe M, Harnagea C, Erfurth W, Hesse D, Gsele U (2000) 100-nm lateral size ferroelectric memory cells fabricated by electron-beam direct writing. Appl Phys A Mater Sci Process 70:247–251

    Article  Google Scholar 

  • Anton SR, Sodano HA (2007) A review of power harvesting using piezoelectric materials (20032006). Smart Mater Struct 16(3):R1

    Article  Google Scholar 

  • Beeby SP, Blackburn A, White NM (1999) Processing of pzt piezoelectric thick films on silicon for microelectromechancial systems. J Micromech Microeng 9(3):218

    Article  Google Scholar 

  • Brooks K, Reany I, Klissurska R, Huang Y, Bursill L, Setter N (1994) orientation of rapid thermally annealed lead-zirconate-titanate thin-films on (111) PT substrates. J Mater Res 9(10):2540–2553

    Article  Google Scholar 

  • Chen CJ, Wu ET, Xu YH, Chen KC, Mackenzie JD (1990) Sol–gel derived ferroelectric pzt thin films on doped silicon substrates. Ferroelectrics 112(1):321–327

    Google Scholar 

  • Dey S, Budd K, Payne D (1988) Thin-film ferroelectrics of pzt of sol–gel processing. IEEE Trans Ultrason Ferroelectr Freq Control 35(1):80 –81

    Article  Google Scholar 

  • Faure S, Chaux O, Gaucher P (1998) Photosensitive sol–gel precursors for direct ultra-violet patterning of SiO2 and PZT materials. J de Physique IV 8(P9):69–72

    Google Scholar 

  • Fu R, Mamazza R, Zheleva T, Kirchner K, Piekarski B (2009) Correlation of materials and ferroelectric properties of sputtered and sol–gel pzt films. In: 18th IEEE international symposium on the applications of ferroelectrics, 2009. ISAF 2009, pp 1–4

  • Fukushima J, Kodaira K, Matsushita T (1984) Preparation of ferroelectric pzt films by thermal decomposition of organometallic compounds. J Mater Sci 19:595–598

    Article  Google Scholar 

  • Guillon S, Saya D, Mazenq L, Nicu L, Soyer C, Costecalde J, Remiens D (2011) Lead-zirconate titanate (pzt) nanoscale patterning by ultraviolet-based lithography lift-off technique for nano-electromechanical systems applications. In: applications of ferroelectrics (ISAF/PFM), 2011 international symposium on and 2011 international symposium on piezoresponse force microscopy and nanoscale phenomena in polar materials, pp 1 –4

  • Haertling G (1999) Ferroelectric ceramics: history and technology. J Am Ceram Soc 82(4):797–818 (100th annual meeting of the American-Ceramic-Society, Cincinnati, Ohio, May 03–06, 1998)

  • Harnagea C, Alexe M, Schilling J, Choi J, Wehrspohn RB, Hesse D, Gosele U (2003) Mesoscopic ferroelectric cell arrays prepared by imprint lithography. Appl Phys Lett 83(9):1827–1829

    Google Scholar 

  • Jeon Y, Sood R, h Jeong J, Kim SG (2005) Mems power generator with transverse mode thin film pzt. Sens Actuators A Phys 122(1):16–22

    Article  Google Scholar 

  • Jones AC (1998) MOCVD of electroceramic oxides: a precursor manufacturer’s perspective. Chem Vapor Depos 4(5):169–179

    Article  Google Scholar 

  • Khan SU, Gobel OF, Blank DHA, ten Elshof JE (2009) Patterning lead zirconate titanate nanostructures at Sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding. ACS Appl Mater Interfaces 1(10):2250–2255

    Google Scholar 

  • Kololuoma T, Hiltunen J, Tuomikoski M, Lappalainen J, Rantala J (2004) Directly UV-photopatternable PLZT thin films prepared with the sol–gel technique. In: Sidorin Y, Tervonen A (ed) Integrated optics: devices, materials, and technologies VIII. Proceedings of the society of photo-optical instrumentation engineers (SPIE), conference on integrated optics-devices, materials and technology VIII, vol 5355, pp 33–39, San Jose, CA, Jan 26–28, 2004

  • Kozuka H (2003) On ceramic thin film formation from gels: evolution of stress, cracks and radiative striations. J Ceram Soc Japan 111(9):624–632

    Article  Google Scholar 

  • Krupanidhi SB, Hu H, Kumar V (1992) Multi-ion-beam reactive sputter deposition of ferroelectric Pb(Zr,Ti)O3 thin films. J Appl Phys 71(1):376–388

    Article  Google Scholar 

  • Lau W, Bello I (1994) Fluorine ion etching of lead zirconate-titanate thin films. Appl Phys Lett 64(3):300

    Article  Google Scholar 

  • Lee HS, Yoon JB (2005) A simple and effective lift-off with positive photoresist. J Micromech Microeng 15(11):2136

    Article  Google Scholar 

  • Leech PW, Holland AS, Sriram S, Bhaskaran M (2008) Patterning of PLZT and PSZT thin films by excimer laser. Appl Phys A Mater Sci Process 91(4):679–684

    Article  Google Scholar 

  • Leppavuori S, Levoska J, Hill A, Tomlinson R, Frantti J, Kusmartseva O, Moilanen H, Pilkington R (1994) Laser ablation deposition as a preparation method for sensor materials. Sens Actuators A Phys 41(1G3):145–149

    Article  Google Scholar 

  • Li H, Ding Y, Tang Y, Liu H, Lu B (2006) Distortion reduction by load release for imprint lithography. Microelectron Eng 83(3):485–491

    Google Scholar 

  • Marson S, Dorey R, Zhang Q, Whatmore R (2003) Thick PZT micro-features obtained by direct patterning of photosensitive precursor solution. Integr Ferroelectr 54:585–593

    Article  Google Scholar 

  • Marson S, Dorey RA, Zhang Q, Whatmore RW, Hardy A, Mullens J (2004) Direct patterning of photosensitive chemical solution deposition pzt layers. J Eur Ceram Soc 24(6):1925–1928. (electroceramics VIII)

    Google Scholar 

  • Martin C, Aksay I (2004) Submicrometer-scale patterning of ceramic thin films. J Electroceram 12(1-2):53–68. DOI 10.1023/B:JECR.0000034001.15359.98

    Google Scholar 

  • Miller RA, Bernstein JJ (2000) A novel wet etch for patterning lead zirconate-titanate (pzt) thin-films. Integr Ferroelectr 29(3–4):225–231

    Google Scholar 

  • Muralt P (2000) Ferroelectric thin films for micro-sensors and actuators: a review. J Micromech Microeng 10(2):136

    Article  Google Scholar 

  • Poor MR, Fleddermann CB (1991) Measurements of etch rate and film stoichiometry variations during plasma etching of lead-lanthanum-zirconium-titanate thin films. J Appl Phys 70(6):3385–3387

    Article  Google Scholar 

  • Schwartz RW (1997) Chemical solution deposition of perovskite thin films. Chem Mater 9(11):2325–2340

    Google Scholar 

  • Soyer C, Cattan E, Remiens D, Guilloux-Viry M (2002) Ion beam etching of lead–zirconate–titanate thin films: Correlation between etching parameters and electrical properties evolution. J Appl Phys 92(2):1048–1055

    Article  Google Scholar 

  • Su-Min Ha H, Woo Sik Kim H, Hyung-Ho P, Tae Song Kim H (2002) Formation and characterization of self-patterned pzt film for applying to micro-mechanical detecting system. Ferroelectr Lett Sect 273(1):351 – 357

    Article  Google Scholar 

  • Tohge N, Takahashi S, Minami T (1991) Preparation of pbzro3 pbtio3 ferroelectric thin films by the sol–gel process. J Am Ceram Soc 74(1):67–71

    Article  Google Scholar 

  • Uozumi G, Kageyama K, Atsuki T, Soyama N, Uchida H, Ogi K (1999) Evaluation of self-patterned PbZrxTi1-xO3 thin film from photosensitive solution. Jpn J Appl Phys Part 1 38(9B):5350–5353

    Article  Google Scholar 

  • Van Buskirk PC, Roeder JF, Bilodeau S (1995) Manufacturing of perovskite thin films using liquid delivery MOCVD. Integr Ferroelect 10(1-4):9–22

    Google Scholar 

Download references

Acknowledgments

The author thanks Mrs. Daniela Lindner for TG/DSC-FTIR coupling measurement and Dipl.-Min. Christian Kohler for SEM-pictures. Financial support by the state of Baden-Wuerttemberg (GenMik) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Benkler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benkler, M., Paul, F., Schott, J. et al. Ferroelectric thin film fabrication by direct UV-lithography. Microsyst Technol 20, 1859–1867 (2014). https://doi.org/10.1007/s00542-013-1963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1963-0

Keywords

Navigation