Skip to main content
Log in

Simple fabrication of an uncooled Al/SiO2 microcantilever IR detector based on bulk micromachining

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A simple microfabrication process to make an uncooled aluminum/silicon dioxide bi-material microcantilever infrared (IR) detector using silicon bulk micromachining technology is presented in this work. This detector is based on high banding of the microcantilever due to the large dissimilar in thermal expansion coefficients between the two materials. It consists of a 1 μm SiO2 layer deposited by 200 nm thin Al layer. Since no sacrificial layer is used in this process, complexity related to releasing sacrificial layer is avoided. Moreover Al is protected in Si etchant using dual-doped tetramethyl ammonium hydroxide. The other advantage of this process is that only three masks are used with four photolithography process. Thermal and thermal mechanical behaviors of this structure are obtained using finite element analysis, and the maximum temperature and displacement at the end of cantilever at 100 pW/μm2 absorbed IR power density on top surface are 7.82°K and 1.924 μm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

FEA:

Finite element analysis

IR:

Infrared

TMAH:

Tetramethyl ammonium hydroxide

MEMS:

Micro electromechanical system

SEM:

Scanning electron microscope

CTE:

Thermal expansion coefficients

Al:

Aluminum

Au:

Gold

BOE:

Buffered hydrofluoric acid

Cr:

Chromium

DI:

De-ionized

HF:

Hydrofluoric acid

Si:

Silicon

SiNx :

Silicon nitride

SiO2 :

Silicon dioxide

A :

Cross-section area of leg

A ab :

IR absorbed area

L :

One of the folded lengths of leg

t 1 :

Thickness of Al layer

t 2 :

Thickness of SiO2 layer

T :

Element temperature

ΔT:

Temperature rise

ΔT s :

Blackbody target temperature change

G Total :

Total thermal conduction between the detector structure and the surroundings regain

G air :

Air thermal conductance

G rad :

Thermal radiative conductance

G leg :

Thermal leg’s conductance

V :

Volume of film

W s :

Absorbed IR power density

n :

Ratio of Al and SiO2 Young’s modulus

x :

Al and SiO2 thickness ratio

c :

Heat capacity

σ :

Stefan–Boltzmann constant

ρ :

Density of the material

ε Al :

Al emissivity

\(\varepsilon_{{SiO_{2} }}\) :

SiO 2 emissivity

k :

Thermal conductivity coefficient

η :

IR absorption efficiency

τ 0 :

Optical transmission efficiency

F :

f number of the optics

(dP/dT) λ1−λ2 :

IR target power emission rate per unit area within 8–14 μm wavelength range

α 1 :

CTE of Al layer

α 2 :

CTE of SiO2 layer

References

  • Biswas K, Das S, Maurya DK, Kal S, Lahiri SK (2006) Bulk micromachining of silicon in TMAH-based etchants for aluminum passivation and smooth surface. Microelectron J 37:321–327. doi:10.1016/j.mejo.2005.05.013

    Article  Google Scholar 

  • Brida S, Faes A, Guarnieri V, Giacomozzi F, Margesin B, Paranjape M, Pignatel GU, Zen M (2000) Microstructures etched in doped TMAH solutions. Microelectron Eng 53:547–551. doi:10.1016/j.mejo.2005.05.013

    Article  Google Scholar 

  • Cao J, Chen Z, Lu W, Zhang Y, Lei K, Zhao B (2009) Design of readout circuit for microcantilever-based ripple uncooled infrared focal plane arrays. Proceedings of SPIE, International Symposium on Photoelectronic Detection and Imaging 7383: 73834J doi:10.1117/12.836710

  • Cheng T, Zhang Q-C, Jiao B-B, Chen D-P, Wu X-P (2009) Analysis of optical readout sensitivity for uncooled infrared detector. Chinese Phys Lett 26(12):124206. doi:10.1088/0256-307X/26/12/124206

    Article  Google Scholar 

  • Cheng G, Zhao Y, Dong L, Hui M, Yu X, Liu X (2013a) Short-wave infrared, medium-wave infrared, and long-wave infrared imaging study for optical readout microcantilever array infrared sensing system. Opt Eng 52(2):0264031–0264037. doi:10.1117/1.OE.52.2.026403

    Google Scholar 

  • Cheng G, Zhao Y, Dong L, Hui M, Yu X, Liu X (2013b) The tolerable target temperature for bi-material microcantilever array infrared imaging. Opt Laser Technol 45:545–550. doi:10.1016/j.optlastec.2012.05.034

    Article  Google Scholar 

  • Correa M, Hermosilla G, Verschae R, Ruiz-del-Solar J (2012) Human detection and identification by robots using thermal and visual information in domestic environments. J Intell Robot Syst 66:223–243. doi:10.1007/s10846-011-9612-2

    Article  Google Scholar 

  • Datskos PG, Lavrik NV, Rajic S (2004) Performance of uncooled microcantilever thermal detectors. Rev Sci Instrum 75:1134–1148. doi:10.1063/1.1667257

    Article  Google Scholar 

  • Dobrzafiski L, Nossarzewska-Odowska E, Nowak Z, Piotrowski J (1997) Micromachined silicon bolometers as detectors of soft X-ray, ultraviolet, visible and infrared radiation. Sens Actuators A 60:154–159. doi:10.1016/s0924-4247(97)01512-4

    Article  Google Scholar 

  • Dong F, Zhang Q, Chen D, Pan L, Guo Z, Wang W, Duan Z, Wu X (2007) An uncooled optically readable infrared imaging detector. Sens Actuators A 133:236–242. doi:10.1016/j.sna.2006.04.031

    Article  Google Scholar 

  • Fujitsuka N, Sakata J, Miyachi Y, Mizuno K, Ohtsuka K, Taga Y, Tabata O (1998) Monolithic pyroelectric infrared image sensor using PVDF thin film. Sens Actuators A 66:237–243. doi:10.1109/sensor.1997.635451

    Article  Google Scholar 

  • Gray GJ, Aouf N, Richardson M, Butters B, Walmsley R (2013) Countermeasure effectiveness against an intelligent imaging infrared anti-ship missile. Opt Eng 52(2):026401–026410. doi:10.1117/1.OE.52.2.026401

    Article  Google Scholar 

  • Grbovic D, Lavrik NV, Rajic S, Datskos PG (2008a) Arrays of SiO2 substrate-free micromechanical uncooled infrared and terahertz detectors. J Appl Phys 104:05450801–05450807. doi:10.1063/1.2959574

    Article  Google Scholar 

  • Grbovic D, Rajic S, Lavrik NV, Datskos PG (2008b) Progress with MEMS based UGS (IR/THz). Proceedings of SPIE, Unattended Ground, Sea, and Air Sensor Technologies and Applications X 6963: 69631701–69631711 doi:10.1117/12.786633

  • Grbovic D, Karunasiri G, Rajic S, Datskos PG (2009) Fabrication of Bi-material MEMS detector arrays for THz imaging. Proceedings of SPIE, Terahertz Physics, Devices, and Systems III 7311: 7311081–73110807 doi:10.1117/12.818317

  • Hunter SR, Maurer G (2006) High sensitivity Uncooled microcantilever infrared imaging arrays. Proceedings of SPIE, Infrared Technology and Applications XXXII 6206: 62061j1–62061j13. doi:10.117/12.726316

  • Hunter SR, Maurer G (2007) High sensitivity 25 μm and 50 μm pitch microcantilever IR imaging arrays. Proceedings of SPIE, Infrared Technology and Applications XXXIII 6542:65421F1-65421F13. doi:10.117/12.664727

  • Jiao B, Chen D, Li C, Shi S, Ye T, Zhang Q, Guo Z, Dong F, Miao Z (2006) Design of a novel uncooled infrared focal plane array. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems pp 430–433. doi:10.1109/NEMS.2006.334792

  • Kruse PW (1995) A comparison of the limits to the performance of thermal and photon detector imaging arrays. Infrared Phys Technol 36(5):869–882. doi:10.1016/1350-4495(95)00014-p

    Article  Google Scholar 

  • Kruse PW (1996) Uncooled infrared imaging arrays and systems. vol. 47

  • Kwon IW, Kim JE, Hwang CH, Kim TK, Lee YS, Lee HC (2007) A high fill-factor uncooled infrared detector with thermo-mechanical bimaterial structure. Proceedings of SPIE, Infrared Technology and Applications XXXIII 6542: 65421O1–65421O10 doi:10.1117/12.719207

  • Kwon IW, Kim JE, Hwang CH, Kim TK, Lee YS, Lee HC (2008) A high fill-factor uncooled infrared detector with low noise characteristic. Proceedings of SPIE, Infrared Technology and Applications XXXIV 6940:694014 01-694014 01. doi: 10.1117/12.780506

  • Kwon IW, Son HJ, Kim DS, Hwang CH, Lee YS, Yu BG, Lee HC (2009) A cantilever-type uncooled infrared detector with high fill-factor and low-noise characteristic. Electron Device Lett 30:635–637. doi:10.1109/LED.2009.2013221

    Article  Google Scholar 

  • Li B (2004) Design and simulation of an uncooled double-cantilever micro bolometer with the potential for ~mK NETD. Sens Actuators A 112:351–359. doi:10.1016/j.sna.2004.01.031

    Article  Google Scholar 

  • Li Y, Zheng Q, Hu Y, Xu Y (2011) Micromachined piezoresistive accelerometers based on an asymmetrically gapped cantilever. J Microelectromech Syst 20(1):83–94. doi:10.1109/JMEMS.2010.2100024

    Article  Google Scholar 

  • Oh SJ, Huh Y-M, Suh J-S, Choi J, Haam S, Son J-H (2012) Cancer diagnosis by terahertz molecular imaging technique. J Infrared Milli Terahz Waves 33:74–81. doi:10.1007/s10762-011-9847-9

    Article  Google Scholar 

  • Razeghi M, Haddadi A, Hoang AM, Huang EK, Chen G, Bogdanov S, Darvish SR, Callewaert F, McClintock R (2013) Advances in antimonide-based type-II super lattices for infrared detection and imaging at canter for quantum devices. Infrared Phys Technol. doi:10.1016/j.infrared.2012.12.008

    Google Scholar 

  • Schieferdecker J, Quad R, Holzenkampfer E, Schulze M (1995) Infrared thermopile sensors with high sensitivity and very low temperature coefficient. Sens Actuators A 46(47):422–427. doi:10.1016/0924-4247(94)00934-A

    Article  Google Scholar 

  • Su B, Duan G (2011) A high sensitivity THz Detector. Proceedings of SPIE, International Symposium on Photoelectronic Detection and Imaging: Terahertz Wave Technologies and Applications 8195: 81951K1–81951K7 doi:10.1117/12.900992

  • Szentpali B, Matyi G, Furjes P, Laszlo E, Battistig G, Barsony I, Karolyi G, Berceli T (2012) Thermopile-based THz antenna. Microsyst Technol 18:849–856. doi:10.1007/s00542-011-1387-7

    Article  Google Scholar 

  • Vigni ML, Cocchi M (2013) Near infrared spectroscopy and multivariate analysis to evaluate wheat flour doughs leavening and bread properties. Anal Chim Acta 764:17–23. doi:10.1016/j.aca.2012.12.018

    Article  Google Scholar 

  • Wang W, Upadhyay V, Munoz C, Bumgarner J, Edwards O (2006) FEA Simulation, design and fabrication of uncooled MEMS capacitive thermal detector for infrared FPA imaging. Proceedings of SPIE, Infrared Technology and Applications XXXII 6206: 62061L1–62061L12. doi:10.1117/12.665080

  • Wang B, Lai J, Zhao E, Hu H, Chen S (2012) Research on VOx uncooled infrared bolometer based on porous silicon. Front Optoelectron 5(3):292–297. doi:10.1007/s12200-012-0224-7

    Article  Google Scholar 

  • Wang B, Lai J, Li H, Hu H, Chen S (2013) Nanostructured vanadium oxide thin film with high TCR at room temperature for microbolometer. Infrared Phys Technol 57:8–13. doi:10.1016/j.infrared.2012.10.006

    Article  Google Scholar 

  • Xu Z, Yan D, Xiao D, Yu P, Zhu J (2012) Temperature field and residual stress analysis of multilayer pyroelectric thin film. Ceram Int 38:981–985. doi:10.1016/j.ceramint.2011.08.019

    Article  Google Scholar 

  • Zhao Y (2002) Optomechanical uncooled infrared imaging system. Dissertation, UC, Berkeley

  • Zhao Y, Mao M, Horowitz R, Majumdar A, Varesi J, Norton P, Kitching J (2002) Optomechanical uncooled infrared imaging system: design, microfabrication, and performance. J Microelectromech Syst 11:136–146. doi:10.1109/84.993448

    Article  Google Scholar 

  • Zhao A-D, Zheng Y-J, Yu X-M (2012) Imaging and characteristics of a bimaterial microcantilever FPA fabricated using bulk silicon processes. Chinese Phys Lett 29(5):058502. doi:10.1088/0256-307X/29/5/058502

    Article  Google Scholar 

  • Zhu D-Q, Shen W-T, Cai G-B, Ke W-N (2013) Numerical simulation and experimental study of factors influencing the optical characteristics of a spatial target. Appl Therm Eng 50:749–762. doi:10.1016/j.applthermaleng.2012.08.017

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abdollahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdollahi, H., Hajghassem, H. & Mohajerzadeh, S. Simple fabrication of an uncooled Al/SiO2 microcantilever IR detector based on bulk micromachining. Microsyst Technol 20, 387–396 (2014). https://doi.org/10.1007/s00542-013-1854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1854-4

Keywords

Navigation