Skip to main content
Log in

Navigation of a robotic capsule endoscope with a novel ultrasound tracking system

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Capsule endoscopes used for diagnosis in the gastro intestinal tract have gained much popularity in recent years due to the minimized patient discomfort and available operating range. New therapeutic applications of these devices are surgical interventions or medication at specific locations. So far capsule endoscopic devices are passively propelled prohibiting these new approaches. To overcome this issue we presented a Magnet Drive Unit (MDU) for external actuation for robotic capsule devices in our previous work. While MDU is used for manipulation of a capsule-robot, there has not been any information of the current location of the robot within the patient. Therefore, we propose a novel ultrasound based tracking system for the capsule-robot and endoscopic devices in this manuscript. The tracking system consists of a Cartesian robot actuating a transcutaneous sonographic probe in two degrees of freedom. While the capsule-robot is propelled by MDU, our tracking system generates sonographic images through the back of the patient showing the current location of the capsule. The results of our experiments unveil that our concept is feasible and can be used to navigate a robotic capsule device inside the human body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. We abbreviated the indices, i.e., w = water, s = silicone, t = tissue, a = aluminum.

References

  • Bley H (1994) Ultraschalldiagnostik (Sonographie), Ultraschalltherapie, Lithotripsie. Kompendium Medizin + Technik. FORUM-MEDIZIN Verlagsgesellschaft mbH. Graefelfing, Germany, pp 305–319

    Google Scholar 

  • Gong F, Swain P, Mills T (2000) Wireless endoscopy. Gastrointest Endosc 51:725–729. doi:10.1067/mge.2000.105724

    Article  Google Scholar 

  • Gregersen H (2003) Biomechanics of the gastrointestinal tract: new perspectives in motility research and diagnostics. Springer, Heidelberg

    Book  Google Scholar 

  • Gumprecht JDJ, Maier T, Eckl R et al (2010) A new ultrasound imaging concept for laparoscopy in urology. In: Proceedings of 32nd annual international conference of the IEEE engineering in medicine and biology society (EMBC). Buenos Aires, pp 5991–5994

  • Gumprecht JDJ, Bauer T, Stolzenburg J-U, Lueth TC (2011) A robotics-based flat-panel ultrasound device for continuous intraoperative transcutaneous imaging. In: Proceedings of 33rd annual international conference of the IEEE engineering in medicine and biology society (EMBC). Boston, MA, USA, pp 2152–2155

  • Gumprecht JDJ, Geiger F, Stolzenburg J-U, Lueth TC (2012a) A flat-panel ultrasound robot to align an abdominal ultrasound probe during laparoscopic partial nephrectomy. In: Proceedings of ASME 2012 international mechanical engineering congress and exposition (IMECE 2012), accepted for publication

  • Gumprecht JDJ, Lueth TC, Khamesee MB (2012b) Tracking of a magnetic capsule-robot inside the human esophagus based on a novel ultrasound navigation system. In: 2012 ASME-ISPS/JSME-IIP joint international conference on micromechatronics for information and precision equipment (MIPE2012). Santa Clara, CA, USA, pp 20–22

  • Hopkins HH, Kapany NS (1954) A flexible fibrescope, using static scanning. Nature 173:39–41. doi:10.1038/173039b0

    Article  Google Scholar 

  • Hosseini S, Khamesee MB (2009) Design and control of a magnetically driven capsule-robot for endoscopy and drug delivery. In: IEEE Toronto international conference on science and technology for humanity, pp 697–702

  • Hosseini S, Mehrtash M, Khamesee MB (2011) Design, fabrication and control of a magnetic capsule-robot for the human esophagus. Microsyst Technol 17:1145–1152

    Article  Google Scholar 

  • Huaming L, Jindong T, Mingjun Z (2009) Dynamics modeling and analysis of a swimming microrobot for controlled drug delivery. IEEE Trans Autom Sci Eng 6:220–227. doi:10.1109/TASE.2008.917137

    Article  Google Scholar 

  • Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405:417

    Article  Google Scholar 

  • Khamesee MB, Kato N, Nomura Y, Nakamura T (2002) Design and control of a microrobotic system using magnetic levitation. IEEE/ASME Trans Mechatron 7:1–14

    Article  Google Scholar 

  • Kim B, Park S, Park J-O (2009) Microrobots for a capsule endoscope. In: 2009 IEEE/ASME international conference on advanced intelligent mechatronics. IEEE, pp 729–734

  • Leighton JA (2011) The role of endoscopic imaging of the small bowel in clinical practice. Am J Gastroenterol 106:27–36; quiz 37. doi:10.1038/ajg.2010.410

    Google Scholar 

  • Mackay RS, Jacobson B (1957) Endoradiosonde. Nature 179:1239–1240. doi:10.1038/1791239a0

    Article  Google Scholar 

  • Mehrtash M, Tsuda N, Khamesee MB (2011) Bilateral macro–micro teleoperation using magnetic levitation. IEEE/ASME Trans Mechatron 16:459–469. doi:10.1109/TMECH.2011.2121090

    Article  Google Scholar 

  • Moglia A, Menciassi A, Schurr MO, Dario P (2007) Wireless capsule endoscopy: from diagnostic devices to multipurpose robotic systems. Biomed Microdevices 9:235–243. doi:10.1007/s10544-006-9025-3

    Article  Google Scholar 

  • Noller HG (1960) Die endoradiosonde. Deutsche Medizinische Wochenschrift 85:1707

    Article  Google Scholar 

  • Park H, Park S, Yoon E et al (2007) Paddling based microrobot for capsule endoscopes. In: Proceedings 2007 IEEE international conference on robotics and automation. IEEE, pp 3377–3382

  • Selfridge AR (1985) Approximate material properties in isotropic materials. IEEE Trans Sonics Ultrasonics 32:381–394

    Article  Google Scholar 

  • Simi M, Valdastri P, Quaglia C et al (2010) Design, fabrication, and testing of a capsule with hybrid locomotion for gastrointestinal tract exploration. IEEE/ASME Trans Mechatron 15:170–180. doi:10.1109/TMECH.2010.2041244

    Article  Google Scholar 

  • Swain P (2003) Wireless capsule endoscopy. Gut 52(Suppl 4):iv48–iv50

    Google Scholar 

  • Welch G, Foxlin E (2002) Motion tracking: no silver bullet, but a respectable arsenal. IEEE Comput Graph Appl 22:24–38. doi:10.1109/MCG.2002.1046626

    Article  Google Scholar 

  • Zworykin VK (1957) A “Radio Pill”. Nature 179:898. doi:10.1038/179898a0

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kai Wang for the support during the performance of the experiments. The support of the German research foundation (Grant PAK 404) for the development of the flat-panel ultrasound robot is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Behrad Khamesee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gumprecht, J.D.J., Lueth, T.C. & Khamesee, M.B. Navigation of a robotic capsule endoscope with a novel ultrasound tracking system. Microsyst Technol 19, 1415–1423 (2013). https://doi.org/10.1007/s00542-013-1828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1828-6

Keywords

Navigation