Skip to main content
Log in

Characterization of silver nanoparticle based inkjet printed lines

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Inkjet of conductive patterns is a topic which already attracted much interesting research. Its importance arises from the ability to deposit electrical circuits on almost any kind of substrates. Understanding the controlling parameters to obtain lines with suppressed coffee stain effect still remains an important goal. The results reported here were obtained with a commercial nanoparticle based silver ink printed with a Dimatix 2800 printer. They show the effect of the printing parameters (drop spacing, substrate temperature, ink concentration and substrate type) on the 3D shape of straight lines. In particular it is shown that flat lines can be obtained at any ink concentration on the two different substrate types tested but at specific substrate temperature and drop spacing. Dependence of line cross-section area and line width on drop spacing is also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Chatzikomis C, Pattinson SW, Koziol KKK, Hutchings IM (2012) Patterning of carbon nanotube structures by inkjet printing of catalyst. J Mater Sci 47:5760–5765

    Article  Google Scholar 

  • Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829

    Article  Google Scholar 

  • Denneulin A, Bras J, Carcone F, Neuman C, Blayo A (2011) Impact of ink formulation on carbon nanotube network organization within inkjet printed conductive films. Carbon 49:2603–2614

    Article  Google Scholar 

  • Deravi LF, Gerdon AE, Cliffel DE, Wright DW, Sumerel JL (2007) Output analysis of materials inkjet printer. Appl Phys Lett 91:113114

    Article  Google Scholar 

  • Duineveld PC (2003) The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech 477:175–200

    Article  MATH  Google Scholar 

  • Famili A, Palkar SA, Baldy WJ Jr (2011) First drop dissimilarity in drop-on-demand inkjet devices. Phys Fluids 23:012109

    Article  Google Scholar 

  • Frassy J, Lecot C, Delattre C, Soucemarianadin A (2006) Droplet evaporation on solid substrates of different wetting behaviour. SHF—Microfluidics 2006—Toulouse, 12–14 December 2006

  • NIH http://rsb.info.nih.gov/ij/ accessed 23/09/2012

  • Greer JR, Street RA (2007) Thermal cure effects on electrical performance of nanoparticle silver inks. Acta Mater 55:6345–6349

    Article  Google Scholar 

  • Haverinen HM, Myllyla RA, Jabbour GE (2009) Inkjet printing of light emitting quantum dots. Appl Phys Lett 94:073108

    Article  Google Scholar 

  • Hor YL, Szabó Z, Lim HC, Federici JF, Li EP (2010) Terahertz response of microfluidic-jetted three-dimensional flexible metamaterials. Applied Optics 49:1179–1184

    Google Scholar 

  • Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J Phys Chem B Lett 110:7090–7094

    Article  Google Scholar 

  • Kamata T, Yoshida M, Kodzasa T, Uemura S, Hoshino S, Takada N (2009) Development of flexible-printable device processing technology—for achievement of prosumer electronics. Synthesiology 1:177–186

    Google Scholar 

  • Kim D, Jeong S, Park BK, Moona J (2006) Direct writing of silver conductive patterns: improvement of film morphology and conductance by controlling solvent compositions. Appl Phys Lett 89:264101

    Article  Google Scholar 

  • Kim D, Jeong S, Lee S, Park BK, Moon J (2007) Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515:7692–7696

    Article  Google Scholar 

  • Kim HK, Kang JS, Park JS, Hahn HT, Jung HC, Joung JW (2009) Inkjet printed electronics for multifunctional composite structure. Compos Sci Technol 69:1256–1264

    Article  Google Scholar 

  • Li Y, Fu C, Xu J (2007) Topography of thin film formed by drying silver nanoparticle dispersion droplets. Jpn J Appl Phys 46:6807–6810

    Article  Google Scholar 

  • Lin CH, Yang H, Chang FY, Chang SH, Yen MT (2008) Fast patterning microstructures using inkjet printing conformal masks. Microsyst Technol 14:1263–1267

    Article  Google Scholar 

  • Loffredo F, De Girolamo Del Mauro A, Burrasca A, La Ferrara V, Quercia L, Massera E, Di Francia G, Della Sala D (2009) Ink-jet printing technique in polymer/carbon black sensing device fabrication. Sens Actuators B 143:421–429

  • Monteux C, Lequeux F (2011) Packing and sorting colloids at the contact line of a drying drop. Langmuir 27:2917–2922

    Article  Google Scholar 

  • Scandurra A, Indelli GF, Sparta NG, Galliano F, Ravesib S, Pignataro S (2010) Low-temperature sintered conductive silver patterns obtained by inkjet printing for plastic electronics. Surf Interface Anal 42:1163–1167

    Article  Google Scholar 

  • Shimoda T, Morii K, Seki S, Kiguchi H (2003) Inkjet printing of light-emitting polymer displays. MRS Bull 2003:821–827

    Article  Google Scholar 

  • Soltman D, Subramanian V (2008) Inkjet-printed line morphologies and temperature control of the coffee ring effect. Langmuir 24:2224–2231

    Article  Google Scholar 

  • Stringer JE, Smith PJ, Derby B (2005) Droplet behaviour in inkjet printing. Mater Res Soc Symp Proc 860E:LL.2.6.1–LL.2.6.5

  • Subramanian V, Chang PC, Huang D, Lee JB, Molesa SE, Redinger DR, Volkman SK (2006) All-printed RFID tags: materials, devices, and circuit implications. Proceedings of the 19th international conference on VLSI design (VLSID’06)

  • Sun Y, Bromberg V, Gawande S, Biswas S, Singler T (2009) Transport processes associated with inkjet printing of colloidal drops for printable electronics fabrication. 2009 Electronic components and technology conference 1349–1355

  • Szczech JB, Megaridis CM, Gamota DR, Zhang J (2000) Manufacture of microelectronic circuitry by drop-on-demand dispensing of nano-particle liquid suspensions. Mat Res Soc Symp Proc 624:23–28

    Article  Google Scholar 

  • Talbot EL, Berson A, Brown PS, Bain CD (2012) Evaporation of picoliter droplets on surfaces with a range of wettabilities and thermal conductivities. Phys Rev E 85:061604

    Article  Google Scholar 

  • Tien CH, Hung CH, Yu TH (2009) Microlens arrays by direct-writing inkjet print for LCD backlighting applications. J Disp Technol 5:147–151

    Article  Google Scholar 

  • van Osch THJ, Perelaer J, de Laat AWM, Schubert US (2008) Inkjet printing of narrow conductive tracks on untreated polymeric substrates. Adv Mater 20:343–345

    Article  Google Scholar 

  • Yang L, Rida A, Vyas R, Tentzeris MM (2007) RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans Microw Theory Tech 55:2894–2901

    Google Scholar 

  • Yarin AL, Szczech JB, Megaridis CM, Zhang J, Gamota DR (2006) Lines of dense nanoparticle colloidal suspensions evaporating on a flat surface: formation of non-uniform dried deposits. J Colloid Interface Sci 294:343–354

    Article  Google Scholar 

Download references

Acknowledgments

The authors appreciate the financial support of the National Foundation for Science and Technology Development (NAFOSTED)—Vietnam. They also express their thanks to CEA-LETI—Grenoble, France—for granting them access to the 3D microscope used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Fribourg-Blanc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fribourg-Blanc, E., Dang, D.M.T. & Dang, C.M. Characterization of silver nanoparticle based inkjet printed lines. Microsyst Technol 19, 1961–1971 (2013). https://doi.org/10.1007/s00542-013-1743-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-013-1743-x

Keywords

Navigation