Skip to main content
Log in

Photoresist-based integration of enzyme functionality into MEMS

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We demonstrate the direct immobilization of glucose oxidase and lactate oxidase onto photoresists commonly used in microfabrication. The method allows for a cost-effective, facile inclusion of enzyme functionality into novel MEMS devices because it does not require any chemical or physical pre-treatment of surfaces, and it is largely compatible with existing fabrication technologies. We used fluorescence imaging and absorbance spectrometry to confirm attachment of the enzymes onto the photoresists and to determine their activity. In addition, the procedure was used to successfully integrate enzyme functionality into a photoresist-based biosensor. This further demonstrates the effectiveness of the approach, and opens a path towards other novel applications in MEMS research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adams JB (1991) Review: enzyme deactivation during heat processing of food-stuffs. Int J Food Sci Techn 26(1):1–20. doi:10.1111/j.1365-2621.1991.tb01136.x

    Article  Google Scholar 

  • Albareda-Sirvent M, Merkoçi A, Alegret S (2000) Configurations used in the design of screen-printed enzymatic biosensors. A review Sensor Actuat B Chem 69(1–2):153–163. doi:10.1016/S0925-4005(00)00536-0

    Article  Google Scholar 

  • Blagoi G, Keller S, Johansson A, Boisen A, Dufva M (2008) Functionalization of SU-8 photoresist surfaces with IgG proteins. Appl Surf Sci 255:2896–2902. doi:10.1016/j.apsusc.2008.08.089

    Article  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2(10):1361–1364. doi:10.1021/ol005593x

    Article  Google Scholar 

  • Consier S (1999) Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review Biosens Bioelectron 14(5):443–456. doi:10.1016/S0956-5663(99)00024-X

    Article  Google Scholar 

  • Esquisabel A, Hernandez RM, Rodriguez Gascon A, Pedraz JL (2006) Immobilized enzymes for biomedical applications. Method Biotechn 22:283–293. doi:10.1007/978-1-59745-053-9_25

    Article  Google Scholar 

  • Foulds NC, Lowe CR (1986) Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J Chem Soc Faraday Trans 1(82):1259–1264. doi:10.1039/F19868201259

    Google Scholar 

  • Ganesan R, Yoo SY, Choi J-H, Lee SY, Kim J-B (2008) Simple patterning of biomolecules on a diazoketo-functionalized photoresist. J Mater Chem 18(6):703–709. doi:10.1039/B709774C

    Article  Google Scholar 

  • Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D (1993) Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 Å resolution. J Mol Biol 229(1):153–172. doi:10.1006/jmbi.1993.1015

    Article  Google Scholar 

  • Heller A, Feldman B (2008) Electrochemical glucose sensors and their application in diabetes management. Chem Rev 108(7):2482–2505. doi:10.1021/cr068069y

    Article  Google Scholar 

  • Hirsh SL, Bilek MMM, Nosworthy NJ, Kondyurin A, dos Remedios CG, McKenzie DR (2010) A comparison of covalent immobilization and physical adsorption of a cellulose enzyme mixture. Langmuir 26(17):14380–14388. doi:10.1021/la1019845

    Article  Google Scholar 

  • Koeller KM, Wong C-H (2001) Enzymes for chemical synthesis. Nature 409(6817):232–240. doi:10.1038/35051706

    Article  Google Scholar 

  • Liang JF, Li YT, Yang VC (2000) Biomedical applications of immobilized enzymes. J Pharm Sci 89(8):979–990. doi:10.1002/1520-6017(200008)89:8

    Article  Google Scholar 

  • Lin S, Hwang Y, Tsai Y (1996) Immobilization of glucooligo-saccharide oxidase of Acremonium strictum for oligosaccharic acid production. Biotechnol Tech 10(1):63–68. doi:10.1007/BF00161086

    Article  Google Scholar 

  • Lockridge O, Massey V, Sullivan PA (1972) Mechanism of action of the flavoenzyme lactate oxidase. J Biol Chem 247(24):8096–8106

    Google Scholar 

  • Nicolau DV, Taguchi T, Taniguchi H, Yoshikawa S (1998) Micron-sized protein patterning on diazonaphthoquinone/Novolak thin polymeric film. Langmuir 14(7):1927–1936. doi:10.1021/la970802g

    Article  Google Scholar 

  • Patel PD (2002) (Bio)sensors for measurement of analytes implicated in food safety: a review. TrAC 21(2):96–115. doi:10.1016/S0165-9936(01)00136-4

    Google Scholar 

  • Perez-Luna VH, O’Brien MJ, Opperman KA, Hampton PD, Lopez GP, Klumb LA, Stayton PS (1999) Molecular recognition between genetically engineered streptavidin and surface-bound biotin. J Am Chem Soc 121(27):6469–6478. doi:10.1021/ja983984p

    Article  Google Scholar 

  • Pollak A, Blumenfeld H, Wax M, Baughn RL, Whitesides GM (1980) Enzyme immobilization by condensation copolymerization crosslinked polyacrylamide gels. J Am Chem Soc 102(20):6324–6336. doi:10.1021/ja00540a026

    Article  Google Scholar 

  • Rodriguez Couto S, Sanroman MA (2006) Application of solid-state fermentation to food industry–A review. J Food Eng 76(3):291–302. doi:10.1016/j.jfoodeng.2005.05.022

    Article  Google Scholar 

  • Schuhman W (2002) Amperometric enzyme biosensor based on optimized electron-transfer pathways and non-manual immobilization procedures. Rev Mol Biotechn 82(4):425–441. doi:10.1016/S1389-0352(01)00058-7

    Article  Google Scholar 

  • Shum AJ, Cowan M, Lähdesmäki I, Lingley A, Otis B, Parviz BA (2009) Functional modular contact lens. Proc SPIE 7397. doi: 10.1117/12.827720

  • Teramoto M, Nishibue H, Okuhara K, Ogawa H, Kozono H, Matsuyama H, Kajiwara K (1992) Effect of addition of polyethyleneimine on thermal stability and activity of glucose dehydrogenase. Appl Microbiol Biot 38(2):203–208. doi:10.1007/BF00174469

    Article  Google Scholar 

  • Thomas N, Lähdesmäki I, Parviz B (2011) Direct immobilization of enzymes on common photoresists. Tech Dig IEEE MEMS 2011, Cancun, Mexico, January 23-2007, pp 233–236

  • Tiina M, Sandholm M (1989) Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. Int J Food Microbio 8(2):165–174. doi:10.1016/0168-1605(89)90071-8

    Article  Google Scholar 

  • Umena Y, Yorita T, Matsuoka T, Kita A, Fukui K, Morimoto Y (2006) The crystal structure of l-lactate oxidase from Aerococcus viridians at 2.1 Å resolution reveals the mechanism of strict substrate recognition. Biochem Biophys Res Commun 350(2):249–256. doi:10.1016/j.bbrc.2006.09.025

    Article  Google Scholar 

  • Ward OP, Young CS (1990) Reductive biotransformations of organic compounds by cells or enzymes of yeast. Enzyme Microb Tech 12(7):482–493. doi:10.1016/0141-0229(90)90063-V

    Article  Google Scholar 

  • Weber PC, Ohlendorf H, Wendoloski JJ, Salemme FR (1989) Structural origins of high-affinity biotin binding to streptavidin. Science 243(4887):85–88. doi:10.1126/science.2911722

    Article  Google Scholar 

  • Willner I, Katz E (2000) Integration of layered redox proteins and conductive supports for bioelectronic applications. Angew Chem Int Ed 39(7):1180–1218. doi:10.1002/(SICI)1521-3773(20000403)39:7

    Article  Google Scholar 

  • Worsfold PJ (1995) Classification and chemical characteristics of immobilized enzymes. Pure Appl Chem 67(4):597–600. doi:10.1351/pac199567040597

    Article  Google Scholar 

  • Zhu Z, Momeu C, Zakhartsev M, Schwaneberg U (2006) Making glucose oxidase fit for biofuel applications by directed protein evolution. Biosens Bioelectron 21(11):2046–2051. doi:10.1016/j.bios.2005.11.018

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank S. McQuaide for contribution of the schematic in Fig. 3, and A. Lingley for helpful discussions about the sensor setup. In addition, the authors would like to thank A. Shum and M. Cowan for the preliminary sensor design. Furthermore, we thank the National Science Foundation for the financial support of this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, N., Lähdesmäki, I. & Parviz, B.A. Photoresist-based integration of enzyme functionality into MEMS. Microsyst Technol 17, 1505–1510 (2011). https://doi.org/10.1007/s00542-011-1333-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-011-1333-8

Keywords

Navigation