Skip to main content
Log in

Development of new polymer–BaTiO3-composites with improved permittivity for embedded capacitors

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A series of commercially available nanosized barium titanates has been investigated with respect to their use as high-k-ceramic filler in polymer based composites with improved dielectric properties. The thermal treatment of the barium titanate powders at 1,000°C causes a significant increase of the composite’s permittivity. X-ray diffraction experiments prior and after heat treatment revealed that the barium titanate with smallest particle size and the largest specific surface area possesses the thermodynamically unstable cubic phase. In case of the other investigated barium titanates the crystal lattice is distorted. Thermal treatment induces the phase change into the tetragonal one and crystal lattice relaxation enabling higher permittivity values. Composites with a solid load around 78 wt% with a bimodal particle size distribution show high permittivities around 50 and a low loss factor around 5‰ suitable for the realization of embedded capacitors via screen printing or tape casting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley, Weinheim

    Book  Google Scholar 

  • Aoyagi S, Kuroiwa Y, Sawada A, Yamashita I, Atake T (2002) Composite structure of BaTiO3 nanoparticle investigated by SR X-ray diffraction. J Phys Soc Jpn 71:1218–1221. doi:10.1143/JPSJ.71.1218

    Article  Google Scholar 

  • Begg BD, Vance ER, Nowotny J (1994) Effect of particle size on the room-temperature crystal structure of barium titanate. J Am Ceram Soc 77(12):3186–3319. doi:10.1111/j.1151-2916.1994.tb04568.x

    Article  Google Scholar 

  • Bhattacharya SK, Tummala RR (2000) Next generation integral passives: materials, processes, and integration of resistors and capacitors on PWB substrates. J Mater Sci: Mater Electron 11:253–268. doi:10.1023/A:1008913403211

    Article  Google Scholar 

  • Buscaglia V, Buscaglia M, Viviani M, Mitoseriu L, Nanni P, Trefiletti V, Piaggio P, Gregora I, Ostapchuk T, Pokorny J, Petzelt J (2006) Grain size and grain-boundary-related effects on the properties of nanocrystalline barium titanate ceramics. J Eur Ceram Soc 26:2889–2898. doi:10.1016/j.jeurceramsoc.2006.02.005

    Article  Google Scholar 

  • Caseri WR (2006) Nanocomposites of polymers and inorganic particles: preparation, structure and properties. Mater Sci Technol 22(7):807–817. doi:10.1179/174328406X101256

    Article  Google Scholar 

  • Dang Z-M, Yu Y-F, Xu H-P, Bai J (2008) Study on microstructure and dielectric property of the BaTiO3/epoxy resin composites. Comp Sci Technol 68:171–177. doi:10.1016/j.compscitech.2007.05.021

    Article  Google Scholar 

  • Das RN, Lauffer JM, Markovich VR (2008) Fabrication, integration and reliability of nanocomposite based embedded capacitors in microelectronics packaging. J. Mater Chem 18:537–544. doi:10.1039/b712051f

    Article  Google Scholar 

  • Devaraju NG, Kim ES, Lee BI (2005) The synthesis and dielectric study of BaTiO3/polyimide nanocomposite films. Microelectron Eng 82:71–83. doi:10.1016/j.mee.2005.06.003

    Article  Google Scholar 

  • German RM (1989) Particle packing characteristics. Metal Powder Industries Federation. Princeton, USA, pp 135–163

    Google Scholar 

  • German RM (1990) Powder injection molding, Metal Powder Industries Federation. Princeton, USA, pp 163–168

    Google Scholar 

  • Hanemann T (2008) Influence of particle properties on the viscosity of polymer-alumina composites. Ceram Intern 34:2099–2105. doi:10.1016/j.ceramint.2007.08.007

    Article  Google Scholar 

  • Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3:3468–3517. doi:10.3390/ma3063468

    Article  Google Scholar 

  • Hanemann T, Schumacher B, Haußelt J (2010a) Polymerization conditions influence on the thermomechanical and dielectric properties of unsaturated polyester-styrene-copolymers. Microelectr Eng 87:15–19. doi:10.1016/j.mee.2009.05.014

    Article  Google Scholar 

  • Hanemann T, Schumacher B, Haußelt J (2010b) Tuning the dielectric constant of polymers using organic dopants. Microelectron Eng 87:533–536. doi:10.1016/j.mee.2009.05.015

    Article  Google Scholar 

  • Kakimoto M, Takahashi A, Tsurumi T, Hao J, Li L, Kikuchi R, Miwa T, Oono T, Yamada S (2006) Polymer-ceramic nanocomposites based on new concepts for embedded capacitor. Mater Sci Eng B 132:74–78. doi:10.1016/j.mseb.2006.02.032

    Article  Google Scholar 

  • Kinoshita K, Yamaji A (1976) Grain-size effects on dielectric properties in barium titanate ceramics. J Appl Phys 47:371–373. doi:10.1063/1.322330

    Article  Google Scholar 

  • Li L, Takahashi A, Hao J, Kikuchi R, Hayakawa T, Tsurumi T-A, Kakimoto M-A (2005) IEEE Trans. Compon Packag Technol 28:754–759. doi:10.1109/TCAPT.2005.859740

    Article  Google Scholar 

  • Metzner A (1985) Rheology of suspensions in polymeric liquids. J Rheol 29(6):739–775

    Article  Google Scholar 

  • Patsidis A, Psarras GC (2008) Dielectric behaviour and functionality of polymer matrix-ceramic BaTiO3 composites. eXPRESS Polym Lett 2(10):718–726. doi:10.3144/expresspolymlett.2008.85

    Article  Google Scholar 

  • Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. J Min Met Mater Soc 59(3):53–60. doi:10.1007/s11837-007-0040-5

    Google Scholar 

  • Schumacher B, Gesswein H, Haußelt J, Hanemann T (2010) Temperature treatment of nano-scaled barium titanate filler to improve the dielectric properties of high-k-polymer based composites. Microelectron Eng 87:1978–1983. doi:10.1016/j.mee.2009.12.018

    Article  Google Scholar 

  • Sebastian MT, Jantunen H (2010) Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int J Appl Ceram Technol 7(4):415–434

    Google Scholar 

  • Uchino K, Sadanaga E, Hirose T (1989) Dependence of the crystal structure on particle size in barium titanate. J Am Ceram Soc 72(8):1555–1558 doi: 10.1111/j.1151-2916.1989.tb07706.x

  • Wu L, Chure M-C, Wu K-K, Chang W-C, Yang M-J, Liu W-K, Wu M-J (2009) Dielectric properties of barium titanate with different materials powder size. Ceram Intern 35:957–960. doi:10.1016/j.ceramint.2008.04.030

    Article  Google Scholar 

Download references

Acknowledgments

The authors want to thank Mrs. Offermann, Mr. A. Bär and Mr. N. Korf for their assistance of the experimental work and Mr. T. Müller for his experiences in recording the SEM-images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hanemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hanemann, T., Gesswein, H. & Schumacher, B. Development of new polymer–BaTiO3-composites with improved permittivity for embedded capacitors. Microsyst Technol 17, 195–201 (2011). https://doi.org/10.1007/s00542-010-1197-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-010-1197-3

Keywords

Navigation