Skip to main content
Log in

Manufacturing, assembling and packaging of miniaturized neural implants

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Implantable medical devices to interface technical aids with muscles, peripheral nerves, and the brain have been developed for many applications over the last decades. They have been investigated in fundamental neuroscientific studies and some of them have been transferred into clinical practice in diagnosis, therapy and rehabilitation, respectively. Success stories of these implants have been written with help of precision mechanics manufacturing techniques. Latest cutting edge research approaches to restore vision in blind persons and to develop an interface with the human brain as motor control interface, however, need more complex systems, larger scales of integration and higher degrees of miniaturization. Microsystems engineering offers adequate tools, methods, and materials but so far, no MEMS based active medical device has been transferred into clinical practice. Here, different designs, manufacturing technologies and packaging paradigms will be presented and assessed in close relation to the envisioned neuroscientific or medical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Brindley GS (1995) The first 500 sacral anterior root stimulators: implant failures and their repair. Paraplegia 33:5–9

    Google Scholar 

  • Burmeister JJ, Moxon KA, Gerhardt GA (2000) Ceramic-based multisite microelectrodes for electrochemical recordings. Anal Chem 72:187–192

    Article  Google Scholar 

  • Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA (1991) A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Bio-Med Eng 38:758–768

    Article  Google Scholar 

  • Ceballos D, Valero-Cabre A, Valderrama E, Schuettler M, Stieglitz T, Navarro X (2002) Morphologic and functional evaluation of peripheral nerve fibres regenerated through polyimide sieve electrodes over long-term implantation. J Biomed Mater Res 60:517–528

    Article  Google Scholar 

  • Cordeiro J, Henle C, Raab M, Meier W, Stieglitz T, Schulze-Bonhage A, Rickert J (2008) Micromanufactured electrodes for cortical field potentials recording: in vivo study. IFMBE Proc 22:2375–2378

    Article  Google Scholar 

  • Donaldson PEK (1987) Twenty years of neurological prosthesis-making. J Biomed Eng 9:291–298

    Article  Google Scholar 

  • Donaldson PEK (1989) Encapsulating microelectronic implants in one-part silicone rubbers. Med Biol Eng Comput 27:93–94

    Article  Google Scholar 

  • Donaldson PEK (1991) Aspects of silicone rubber as an encapsulant for neurological prostheses—part1: osmosis. Med Biol Eng Comput 29:34–39

    Article  Google Scholar 

  • Donaldson PEK (1995) Aspects of silicone rubber as encapsulant for neurological prostheses—part3: adhesion to mixed oxides. Med Biol Eng Comput 33:725–727

    Article  Google Scholar 

  • Donaldson PEK (1996) The essential role played by adhesion in the technology of neurological prostheses. Int J Adhes Adhes 16:105–107

    Article  Google Scholar 

  • Donaldson PEK (1997) Aspects of silicone rubber as encapsulant for neurological prostheses—part4: two-part rubbers. Med Biol Eng Comput 35:283–286

    Article  Google Scholar 

  • Donaldson PEK, Aylett BJ (1995) Aspects of silicone rubber as encapsulant for neurological prostheses—part2: adhesion to binary oxides. Med Biol Eng Comput 33:285–292

    Article  Google Scholar 

  • Donaldson PEK, Sayer E (1977) Silicone-rubber adhesives as encapsulants for microelectronic implants; effect of high electric fields and of tensile stress. Med Biol Eng Comput 15:712–715

    Article  Google Scholar 

  • Gorham WF (1966) A new, general synthetic method for the preparation of linear poly-p-xylylenes. J Polym Sci A1 4:3027–3039

    Article  Google Scholar 

  • Haemmerle H, Kobuch K, Kohler K, Nisch W, Sachs H, Stelzle M (2002) Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 23:797–804

    Article  Google Scholar 

  • Hassler C, Stieglitz T (2008) Deposition parameters determining insulation resistance and crystallinity of parylene C in neural implant encapsulation. IFMBE Proc 22:2439–2442

    Article  Google Scholar 

  • Hassler C, von Metzen RP, Ruther P, Stieglitz T (2009) Characterization of parylene C as an encapsulation material for neural prostheses. J Biomed Mater Res B (in press)

  • He Q, Meng E, Rutherglen CM, Erickson J, Pine J (2003) Parylene neuro-cages for live neural networks studies. In: Proceedings of 12th international conference on solid-state sensors, actuators and microsystems (Transducers 2003), pp 995–998

  • Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  Google Scholar 

  • Hsu J-M, Kammer S, Jung E, Rieth L, Normann RA, Solzbacher F. (2007a) Characterization of parylene-C film as an encapsulation material for neural interface devices. In: Dimov S, Menz W, Toshev Y (eds): 4 M 2007—Proceedings of the 3rd international conference on multi-material micro manufacture, 4 pp

  • Hsu J-M, Tathireddy P, Rieth L, Normann RA, Solzbacher F (2007b) Characterization of a-SiCx:H thin films as an encapsulation material for integrated silicon based neural interface devices. Thin Solid Films 516:34–41

    Article  Google Scholar 

  • Hsu J-M, Rieth L, Normann RA, Tathireddy P, Solzbacher F (2009) Encapsulation of an integrated neural interface device with parylene-C. IEEE Trans Biomed Eng 56:23–29

    Article  Google Scholar 

  • Huang R, Pang C, Tai Y-C, Emken J, Ustun C, Andersen RA (2008) Parylene coated silicon probes for neural prosthesis. In: Proceedings of the 3rd IEEE international conference on nano/micro engineered and molecular systems, pp 947–950

  • Kim S, Bhandari R, Klein M, Negi S, Rieth L, Tathireddy P, Toepper M, Oppermann H, Solzbacher S (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdev 11:453–466

    Article  Google Scholar 

  • Kisban S, Herwik S, Seidl K, Rubehn B, Jezzini A, Umilta MA, Fogassi L, Stieglitz T, Paul O, Ruther P (2007) Microprobe array with low impedance electrodes and highly flexible polyimide cables for acute neural recording. In: Proceedings of the 29th annual international conference of the IEEE EMBS, pp 175–178

  • Loeb GE, Peck RA (1996) Cuff electrodes for chronic stimulation and recording of peripheral nerve activity. J Neurosci Methods 64:95–103

    Article  Google Scholar 

  • Loeb GE, Bak MJ, Salcman M, Schmidt EM (1977) Parylene as a chronically stable, reproducible microelectrode insulator. IEEE Trans Biomed Eng 24:121–128

    Article  Google Scholar 

  • Meyer J-U, Stieglitz T, Scholz O, Haberer W, Beutel H (2001) High density interconnects and flexible hybrid assemblies for active biomedical implants. IEEE Trans Adv Pack 24:366–374

    Article  Google Scholar 

  • Moxon KA, Leiser SC, Gerhardt GA, Barbee KA, Chapin JK (2004) Ceramic-based multisite electrode arrays for chronic single-neuron recording. IEEE Trans Biomed Eng 51:647–656

    Article  Google Scholar 

  • Muthuswamy J, Okandan M, Gilletti A, Baker MS, Jain T (2005) An array of microactuated microelectrodes for monitoring single-neuronal activity in rodents. IEEE Trans Biomed Eng 52:1470–1477

    Article  Google Scholar 

  • Najafi K, Wise KD (1986) An implantable multielectrode array with on-chip signal processing. IEEE J Solid-State Circ 21:1035–1044

    Article  Google Scholar 

  • Navarro X, Calvet S, Rodriguez FJ, Stieglitz T, Blau C, Buti M, Valderrama E, Meyer J-U (1998) Stimulation and recording from regenerated peripheral nerves through polyimide sieve electrodes. J Peripher Nerv Syst 3:91–101

    Google Scholar 

  • Navarro X, Rodriguez A, Ceballos D, Valderrama E, Schuettler M, Stieglitz T (2000) Assessment of polyimide cuff electrodes for in vivo peripheral nerve stimulation. Exp Neurol 163:307–308

    Google Scholar 

  • Navarro X, Valderrama E, Stieglitz T, Schuettler M (2001) Selective fascicular stimulation of the rat sciatic neve with multipolar polyimide cuff electrodes. Restor Neurol Neurosci 18:9–21

    Google Scholar 

  • Neves HP, Orban GA, Koudelka-Hep M, Stieglitz T, Ruther P (2007) Development of modular multifunctional probe arrays for cerebral applications. In: Proceedings of 3rd international IEEE EMBS conference on neural engineering, pp 104–109

  • Pang C, Musallam S, Tai Y-C, Burdick JW, Andersen RA (2006) Novel monolithic silicon probes with flexible parylene cables for neural prostheses. In: Proceedings of international IEEE EMBS conference on microtechnologies in medicine and biology, pp 64–67

  • Ramachandran A, Junk M, Koch KP, Hoffmann KP (2007) A study of parylene C polymer deposition inside microscale gaps. IEEE Trans Adv Pack 30:712–724

    Article  Google Scholar 

  • Rijkhoff NJM (2004) Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives. Childs Nerv Syst 20:75–86

    Article  Google Scholar 

  • Rodger DC, Weiland JD, Humayun MS (2006) Scalable high lead-count parylene package for retinal prostheses. Sens Actuators B Chem 117:107–114

    Article  Google Scholar 

  • Rodger DC, Fong AJ, Li W, Ameri H, Ahuja AK, Gutierrez C, Lavrov I, Zhong H, Menon PR, Meng E, Burdick JW, Roy RR, Edgerton VR, Weiland JD, Humayun MS, Tai Y-C (2008) Flexible parylene-based multielectrode array technology for high-density neural stimulation and recording. Sens Actuators B Chem 132:449–460

    Article  Google Scholar 

  • Rodriguez FJ, Ceballos D, Schuettler M, Valero-Cabre A, Valderrama E, Stieglitz T, Navarro X (2000) Polyimide cuff electrodes for peripheral nerve stimulation. J Neurosci Methods 98:105–118

    Article  Google Scholar 

  • Rogers W (2005) Sterilization of polymer healthcare products. Rapra Technology, Shawbury

    Google Scholar 

  • Rubehn B, Stieglitz T (2007) Mechanische Lanzeitstabilität von Polyimid als Substratmaterial für mikrotechnisch gefertigte Implantate. Biomed Technol, vol 52(Suppl), 2 pp

    Google Scholar 

  • Rubehn B, Bosmann C, Oostenfeld R, Fries P, Stieglitz (2009) A MEMS-based flexible multichannel ECoG-electrode array. J Neural Eng 6:036003, 10 pp

  • Rupp R, Gerner HJ (2004) Neuroprothetik der Oberen Extremitaet - Klinische Einsatzmoeglichkeiten bei Querschnittslaehmung und Perspektiven fuer die Zukunft. Biomed Technol 49:93–98

    Article  Google Scholar 

  • Schuettler M, Stiess S, Suaning GJ (2005) Fabrication of implantable microelectrode arrays by laser cutting of silicone rubber and platinum foil. J Neural Eng 2:S121–S128

    Article  Google Scholar 

  • Schuettler M, Ordonez JS, Henle C, Oh D, Gilad O, Holder DS (2008) A flexible 29 channel epicortical electrode array. Biomed Technol 53(Suppl 1):232–234

    Google Scholar 

  • Seidl K, Herwik S, Nurcahyo Y, Torfs T, Keller M, Schuettler M, Neves HP, Stieglitz T, Paul O, Ruther P (2009) CMOS-based high-density silicon microprobe array for electronic depth control in neural recording. In: Proceedings of IEEE 22nd international conference on micro electro mechanical systems, pp 232–235

  • Stieglitz T (2004) Considerations on surface and structural biocompatibility as prerequisite for long-term stability of neural prostheses. J Nanosci Nanotechnol 4:496–503

    Article  Google Scholar 

  • Stieglitz T, Meyer J-U (2006a) Neural implants in clinical practice. In: Urban GA (ed) BIOMEMS. Dordrecht, Springer, pp 41–70

    Chapter  Google Scholar 

  • Stieglitz T, Meyer J-U (2006b) Biomedical micro-devices for neural implants. In: Urban GA (ed) BIOMEMS. Dordrecht, Springer, pp 71–137

    Chapter  Google Scholar 

  • Stieglitz T, Beutel H, Meyer J-U (1997) A flexible, light-weighted multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sens Actuators A Phys 60:240–243

    Article  Google Scholar 

  • Stieglitz T, Beutel H, Schuettler M, Meyer J-U (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdev 2:283–294

    Article  Google Scholar 

  • Stieglitz T, Uhlemann J, Koch KP, Meusel E (2003) Ansaetze zu einer Biokompatiblen Aufbau- und Verbindungstechnik fuer Biomedizinische Mikrosysteme. Biomed Technol 48(Suppl 1):378–379

    Article  Google Scholar 

  • Stieglitz T, Haberer W, Lau C, Goertz M (2004) Development of an inductively coupled epiretinal vision prosthesis. In: Proceedings of the 26th annual international conference of the IEEE EMBS, pp 4178–4181

  • Suzuki T, Mabuchi K, Takeuchi S (2003). A 3D flexible parylene probe array for multichannel neural recording. In: Proceedings of the 1st international IEEE EMBS conference on neural engineering, pp 154–156

  • Takeuchi S, Ziegler D, Yoshida Y, Mabuchi K, Suzuki T (2005) Parylene flexible neural probes integrated with microfluidic channels. Lab Chip 5:519–523

    Article  Google Scholar 

  • Walter P, Kisvarday ZF, Goertz M, Alteheld N, Roessler G, Stieglitz T, Eysel UT (2005) Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 46:1780–1785

    Article  Google Scholar 

  • Weiland JD, Anderson DJ, Pogatchnik CC, Boogaard JJ (1997). Recessed electrodes formed by laser ablation of parylene coated, micromachined silicon probes. In: Proceedings of the 19th annual international conference of the IEEE EMBS, pp 2273–2276

  • Wise KD, Angel JB, Starr A (1970) An integrated-circuit approach to extracellular microelectrodes. IEEE Trans Biomed Eng 17:238–247

    Article  Google Scholar 

  • Wise KD, Anderson DJ, Hetke JF, Kipke DR, Najafi K (2004) Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc IEEE 92:76–96

    Article  Google Scholar 

  • Wolgemuth L (2002) Assessing the effects of sterilization methods on parylene coatings. Med Device Diagn Ind 23:46–48

    Google Scholar 

  • Yao Y, Gulari MN, Ghimire S, Hetke JF, Wise KD (2005). A low-profile three-dimensional silicon/parylene stimulating electrode array for neural prosthesis applications. In: Proceedings of 27th annual international conference IEEE EMBS, pp 1293–1296

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Stieglitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stieglitz, T. Manufacturing, assembling and packaging of miniaturized neural implants. Microsyst Technol 16, 723–734 (2010). https://doi.org/10.1007/s00542-009-0988-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-009-0988-x

Keywords

Navigation