Skip to main content
Log in

The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In recent tissue engineering field, it is being reported that the fabrication of three-dimensional (3D) scaffolds having high porous and controlled internal/external architectures can give potential contributions in cell adhesion, proliferation and differentiation. To fabricate these scaffolds, various rapid prototyping technologies are being applied to. The rapid prototyping technology has made it possible to fabricate solid free-form 3D microstructures in layer-by-layer process. In this research, we introduce the development of precision deposition system, which is one of rapid prototyping technologies, and the fabrication result of scaffold using design of experiments (DOE) to optimize the deposition process. The precision deposition system required the combination of several technologies, including motion control, thermal control, pneumatic control, and CAD/CAM software. Through the organization of experimental approach using DOE, the fabrication process of hybrid scaffold, which is composed of blended poly-caprolactone, poly-lactic-co-glycolic acid and tricalcium phosphate, is established to get a uniform line width, line height and porosity efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Chen XB, Ke H (2006) Effects of fluid properties on dispensing processes for electronics packaging. IEEE Trans Electronics Packaging Manufacturing 29:75–82. doi:10.1109/TEPM.2006.874964

    Article  Google Scholar 

  • Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B Appl Biomater 64(2):65–69. doi:10.1002/jbm.b.10485

    Article  Google Scholar 

  • Curodeau A, Sachs E, Caldarise S (2000) Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53(5):525–535. doi:10.1002/1097-4636(200009)53:5<525::AID-JBM12>3.0.CO;2-1

    Article  Google Scholar 

  • Donald EI, Van CM, David B, Laura N, Johnny H, Jeremy M, Ioannis Y, David K, Gordana V-N (2006) Tissue engineering and developmental biology: going biomimetic. Tissue Eng 12(12):3265–3283. doi:10.1089/ten.2006.12.3265

    Article  Google Scholar 

  • Castillo D Enrique (2007) Process optimization: a statistical approach. Springer, Berlin

  • Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20:1055–1061. doi:10.1016/0021-9290(87)90023-6

    Article  Google Scholar 

  • Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362. doi:10.1016/j.tibtech.2004.05.005

    Article  Google Scholar 

  • Lee S-J, Kang H-W, Kang T-Y, Kim B, Lim G, Rhie J-W, Cho D-W (2007) Development of a scaffold fabrication system using an axiomatic approach. J Micromech Microeng 17:147–153. doi:10.1088/0960-1317/17/1/019

    Article  Google Scholar 

  • Mondrinos MJ, Dembzynski R, Lu L, Byrapogu VKC, Wootton DM, Lelkes PI, Zhou J (2006) Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials 27:4399–4408. doi:10.1016/j.biomaterials.2006.03.049

    Article  Google Scholar 

  • Ouyang HW, Goh JCH, Mo XM, Teoh SH, Lee EH (2002) Characterization of anterior ligament cells and bone marrow stromal cells on various biodegradable polymeric films. Mater Sci Eng C 20(1–2):63–69. doi:10.1016/S0928-4931(02)00014-0

    Article  Google Scholar 

  • Tang ZG, Callaghan JT, Hunt JA (2005) The physical properties and response of osteoblasts to solution cast films of PLGA doped polycaprolactone. Biomaterials 26:6618–6624. doi:10.1016/j.biomaterials.2005.04.013

    Article  Google Scholar 

  • Vats A, Tolley NS, Polak JM, Gough JE (2003) Scaffolds and biomaterials for tissue engineering: a review of clinical applications. Clin Otolaryngol 28:165–172. doi:10.1046/j.1365-2273.2003.00686.x

    Article  Google Scholar 

  • Vozzi G, Previti A, Rossi D, Ahluwalia A (2002) Microsyringe-based deposition of two-dimensional and three-dimensional polymer scaffolds with a well-defined geometry for application to tissue engineering. Tissue Eng 8:1089–1098. doi:10.1089/107632702320934182

    Article  Google Scholar 

  • Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827. doi:10.1016/j.biomaterials.2004.11.057

    Article  Google Scholar 

  • Woodfield TBF, Malda J, Wijn J, Peters F, Riesle J, Blitterswijk CA (2004) Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161. doi:10.1016/j.biomaterials.2003.10.056

    Article  Google Scholar 

  • Yang D-Y, Lim TW, Son Y, Kong H-J, Lee K-S, Kim D-P, Park SH (2007) Additive process using femto-second laser for manufacturing three-dimensional nano/micro-structures. Int J Precis Eng Manuf 8(4):63–69

    Google Scholar 

  • Zein I, Hutmacher DW, Tan KC, Teoh SH (2002) Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185. doi:10.1016/S0142-9612(01)00232-0

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. R0A-2005-000-10042-0 & No. M10646020003-08N4602-00310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.Y., Cho, DW. The optimization of hybrid scaffold fabrication process in precision deposition system using design of experiments. Microsyst Technol 15, 843–851 (2009). https://doi.org/10.1007/s00542-008-0727-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-008-0727-8

Keywords

Navigation