Skip to main content
Log in

Comparison of the protective effects of direct ischemic preconditioning and remote ischemic preconditioning in a rabbit model of transient spinal cord ischemia

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Introduction

This study aimed to determine the relative potency of direct ischemic preconditioning (DIPC) and remote ischemic preconditioning (RIPC) for protection against ischemic spinal cord injury in rabbits and to explore the mechanisms involved.

Methods

In experiment 1, we compared the neurological and histopathological outcomes of DIPC, kidney RIPC, and limb RIPC. The DIPC and kidney RIPC groups received two cycles of 5-min occlusion/15-min reperfusion of the abdominal aorta and left renal artery, respectively. The limb RIPC group received two cycles of 10-min occlusion/10-min reperfusion of the femoral arteries bilaterally. Thirty minutes after the conditioning ischemia, spinal cord ischemia was produced by occluding the abdominal aorta for 15 min. In experiments 2 and 3, we investigated whether pretreatment using a free-radical scavenger, dimethylthiourea (DMTU), an adenosine A1 receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), or a mitochondrial ATP-sensitive potassium channel antagonist, 5-hydroxydecanoate (5HD), could attenuate the protective effects of DIPC. In experiment 4, comprehensive analysis of phosphorylated proteins in the spinal cord was performed using a Proteome Profiler Array followed by immunoblotting to elucidate the signal pathway activated by DIPC.

Results

In experiment 1, DIPC improved the neurological and histopathological outcomes, whereas kidney and limb RIPC had no protective effects. In experiments 2 and 3, strong protective effects of DIPC were reconfirmed but were not attenuated by DMTU, DPCPX, or 5HD. In experiment 4, DIPC induced phosphorylation of Akt2.

Conclusions

DIPC, but not kidney or limb RIPC, protected against ischemic spinal cord injury in rabbits. Akt2 might contribute to this protective effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sivaraman V, Pickard JM, Hausenloy DJ. Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia. 2015;70:732–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meybohm P, Bein B, Brosteanu O, Cremer J, Gruenewald M, Stoppe C, Coburn M, Schaelte G, Boning A, Niemann B, Roesner J, Kletzin F, Strouhal U, Reyher C, Laufenberg-Feldmann R, Ferner M, Brandes IF, Bauer M, Stehr SN, Kortgen A, Wittmann M, Baumgarten G, Meyer-Treschan T, Kienbaum P, Heringlake M, Schon J, Sander M, Treskatsch S, Smul T, Wolwender E, Schilling T, Fuernau G, Hasenclever D, Zacharowski K, Collaborators RIS. A multicenter trial of remote ischemic preconditioning for heart surgery. N Engl J Med. 2015;373:1397–407.

    Article  CAS  PubMed  Google Scholar 

  3. Hausenloy DJ, Candilio L, Evans R, Ariti C, Jenkins DP, Kolvekar S, Knight R, Kunst G, Laing C, Nicholas J, Pepper J, Robertson S, Xenou M, Clayton T, Yellon DM, Investigators ET. Remote ischemic preconditioning and outcomes of cardiac surgery. N Engl J Med. 2015;373:1408–17.

    Article  CAS  PubMed  Google Scholar 

  4. Gurcun U, Discigil B, Boga M, Ozkisacik E, Badak MI, Yenisey C, Kurtoglu T, Meteoglu I. Is remote preconditioning as effective as direct ischemic preconditioning in preventing spinal cord ischemic injury? J Surg Res. 2006;135:385–93.

    Article  PubMed  Google Scholar 

  5. Dong HL, Zhang Y, Su BX, Zhu ZH, Gu QH, Sang HF, Xiong L. Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology. 2010;112:881–91.

    Article  PubMed  Google Scholar 

  6. Kakimoto M, Kawaguchi M, Sakamoto T, Inoue S, Furuya H, Nakamura M, Konishi N. Evaluation of rapid ischemic preconditioning in a rabbit model of spinal cord ischemia. Anesthesiology. 2003;99:1112–7.

    Article  PubMed  Google Scholar 

  7. Perez-Pinzon MA, Xu GP, Dietrich WD, Rosenthal M, Sick TJ. Rapid preconditioning protects rats against ischemic neuronal damage after 3 but not 7 days of reperfusion following global cerebral ischemia. J Cereb Blood Flow Metab. 1997;17:175–82.

    Article  CAS  PubMed  Google Scholar 

  8. Utada K, Ishida K, Tohyama S, Urushima Y, Mizukami Y, Yamashita A, Uchida M, Matsumoto M. The combination of insulin-like growth factor 1 and erythropoietin protects against ischemic spinal cord injury in rabbits. J Anesth. 2015;29:741–8.

    Article  PubMed  Google Scholar 

  9. Matsumoto M, Iida Y, Sakabe T, Sano T, Ishikawa T, Nakakimura K. Mild and moderate hypothermia provide better protection than a burst-suppression dose of thiopental against ischemic spinal cord injury in rabbits. Anesthesiology. 1997;86:1120–7.

    Article  CAS  PubMed  Google Scholar 

  10. Drummond JC, Moore SS. The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology. 1989;70:64–70.

    Article  CAS  PubMed  Google Scholar 

  11. Mizukami Y, Iwamatsu A, Aki T, Kimura M, Nakamura K, Nao T, Okusa T, Matsuzaki M, Yoshida K, Kobayashi S. ERK1/2 regulates intracellular ATP levels through alpha-enolase expression in cardiomyocytes exposed to ischemic hypoxia and reoxygenation. J Biol Chem. 2004;279:50120–31.

    Article  CAS  PubMed  Google Scholar 

  12. Haapanen H, Herajarvi J, Arvola O, Anttila T, Starck T, Kallio M, Anttila V, Tuominen H, Kiviluoma K, Juvonen T. Remote ischemic preconditioning protects the spinal cord against ischemic insult: an experimental study in a porcine model. J Thorac Cardiovasc Surg. 2016;151:777–85.

    Article  PubMed  Google Scholar 

  13. Herajarvi J, Anttila T, Sarja H, Mustonen C, Haapanen H, Makela T, Yannopoulos F, Starck T, Kallio M, Tuominen H, Puistola U, Karihtala P, Kiviluoma K, Anttila V, Juvonen T. Exploring spinal cord protection by remote ischemic preconditioning: an experimental study. Ann Thorac Surg. 2017;103:804–11.

    Article  PubMed  Google Scholar 

  14. Schulz R, Cohen MV, Behrends M, Downey JM, Heusch G. Signal transduction of ischemic preconditioning. Cardiovasc Res. 2001;52:181–98.

    Article  CAS  PubMed  Google Scholar 

  15. Lei C, Deng J, Wang B, Cheng D, Yang Q, Dong H, Xiong L. Reactive oxygen species scavenger inhibits STAT3 activation after transient focal cerebral ischemia-reperfusion injury in rats. Anesth Analg. 2011;113:153–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hiraide T, Katsura K, Muramatsu H, Asano G, Katayama Y. Adenosine receptor antagonists cancelled the ischemic tolerance phenomenon in gerbil. Brain Res. 2001;910:94–8.

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura M, Nakakimura K, Matsumoto M, Sakabe T. Rapid tolerance to focal cerebral ischemia in rats is attenuated by adenosine A1 receptor antagonist. J Cereb Blood Flow Metab. 2002;22:161–70.

    Article  CAS  PubMed  Google Scholar 

  18. Mehrjerdi FZ, Aboutaleb N, Pazoki-Toroudi H, Soleimani M, Ajami M, Khaksari M, Safari F, Habibey R. The protective effect of remote renal preconditioning against hippocampal ischemia reperfusion injury: role of KATP channels. J Mol Neurosci. 2015;57:554–60.

    Article  CAS  PubMed  Google Scholar 

  19. Yoshida M, Nakakimura K, Cui YJ, Matsumoto M, Sakabe T. Adenosine A1 receptor antagonist and mitochondrial ATP-sensitive potassium channel blocker attenuate the tolerance to focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2004;24:771–9.

    Article  CAS  PubMed  Google Scholar 

  20. Diez H, Garrido JJ, Wandosell F. Specific roles of Akt iso forms in apoptosis and axon growth regulation in neurons. PLoS One. 2012;7:e32715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a Grant-in-Aid for Scientific Research (C) (No. 25462437) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mishiya Matsumoto.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukui, T., Ishida, K., Mizukami, Y. et al. Comparison of the protective effects of direct ischemic preconditioning and remote ischemic preconditioning in a rabbit model of transient spinal cord ischemia. J Anesth 32, 3–14 (2018). https://doi.org/10.1007/s00540-017-2420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-017-2420-5

Keywords

Navigation