Skip to main content
Log in

Nitrite administration improves sepsis-induced myocardial and mitochondrial dysfunction by modulating stress signal responses

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

A specific therapeutic strategy in sepsis-induced myocardial dysfunction remains to be determined. Nitrite may have cardioprotective effects against sepsis-induced myocardial dysfunction. This study investigated the cardioprotective effects of nitrite on myocardial function, mitochondrial bioenergetics, and its underlying molecular mechanisms in severe septic rats.

Methods

Sepsis was induced in male Wistar rats by cecal ligation and puncture (CLP). After CLP, we administered normal saline (NS group) or nitrite (nitrite group) subcutaneously. We administered nitrite at different doses (0.1–10 mg/kg) to ascertain the most effective dose and examined cardiac function in an isolated heart experiment 8 h after CLP. We investigated mitochondrial bioenergetics and molecular mechanisms underlying the administration of nitrite in vitro.

Results

In isolated heart experiments, the left ventricular developed pressure (96 ± 5 mmHg) at a moderate nitrite dose (1.0 mg/kg) was significantly higher than that in the NS group (75 ± 4 mmHg, P < 0.05). Mitochondrial oxidative phosphorylation in the nitrite group was significantly higher than that in the NS group (P < 0.01). Immunoblotting revealed that nitrite significantly increased the phosphorylation of Akt (P < 0.05) and reduced the nuclear translocation of NF-κB (P < 0.05) compared with the NS group. Nitrite was also shown to improve the rate of survival in severe septic rats (P < 0.001).

Conclusions

Our results showed that a moderate nitrite dose improved septic myocardial dysfunction at organ, cellular, and molecular levels via modulation of stress signal responses, which resulted in an improvement in survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369:840–51.

    Article  CAS  PubMed  Google Scholar 

  2. López A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R. Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med. 2004;32:21–30.

    Article  PubMed  Google Scholar 

  3. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Intensive Care Med. 2013;39:165–228.

    Article  CAS  PubMed  Google Scholar 

  4. Merx MW, Weber C. Sepsis and the heart. Circulation. 2007;116:793–802.

    Article  CAS  PubMed  Google Scholar 

  5. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, Avidan A, Beeri R, Weissman C, Jaffe AS, Sprung CL. Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J. 2012;33:895–903.

    Article  CAS  PubMed  Google Scholar 

  6. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med. 2007;35:1599–608.

    Article  PubMed  Google Scholar 

  7. Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, Windsor JA. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47:1517–25.

    Article  CAS  PubMed  Google Scholar 

  8. Calvert JW, Lefer DJ. Clinical translation of nitrite therapy for cardiovascular diseases. Nitric Oxide. 2010;22:91–7.

    Article  CAS  PubMed  Google Scholar 

  9. Weitzberg E, Hezel M, Lundberg JO. Nitrate–nitrite–nitric oxide pathway: implications for anesthesiology and intensive care. Anesthesiology. 2010;113:1460–75.

    Article  CAS  PubMed  Google Scholar 

  10. Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. J Exp Med. 2007;204:2089–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gonzalez FM, Shiva S, Vincent PS, Ringwood LA, Hsu LY, Hon YY, Aletras AH, Cannon RO 3rd, Gladwin MT, Arai AE. Nitrite anion provides potent cytoprotective and antiapoptotic effects as adjunctive therapy to reperfusion for acute myocardial infarction. Circulation. 2008;117:2986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jung KH, Chu K, Ko SY, Lee ST, Sinn DI, Park DK, Kim JM, Song EC, Kim M, Roh JK. Early intravenous infusion of sodium nitrite protects brain against in vivo ischemia-reperfusion injury. Stroke. 2006;37:2744–50.

    Article  CAS  PubMed  Google Scholar 

  13. Matsuno K, Iwata K, Matsumoto M, Katsuyama M, Cui W, Murata A, Nakamura H, Ibi M, Ikami K, Zhang J, Matoba S, Jin D, Takai S, Matsubara H, Matsuda N, Yabe-Nishimura C. NOX1/NADPH oxidase is involved in endotoxin-induced cardiomyocyte apoptosis. Free Radic Biol Med. 2012;53:1718–28.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang S, Zhu W, Li C, Zhang X, Lu T, Ding Z, Cao K, Liu L. α-Lipoic acid attenuates LPS-induced cardiac dysfunction through a PI3K/Akt-dependent mechanism. Int Immunopharmacol. 2013;16:100–7.

    Article  CAS  PubMed  Google Scholar 

  15. Landesberg G, Levin PD, Gilon D, Goodman S, Georgieva M, Weissman C, Jaffe AS, Sprung CL, Barak V. Myocardial dysfunction in severe sepsis and septic shock: no correlation with inflammatory cytokines in real-life clinical setting. Chest. 2015;148:93–102.

    Article  PubMed  Google Scholar 

  16. Yaghi A, Paterson NA, McCormack DG. Vascular reactivity in sepsis: importance of controls and role of nitric oxide. Am J Respir Crit Care Med. 1995;151:706–12.

    Article  CAS  PubMed  Google Scholar 

  17. Fujimura N, Sumita S, Aimono M, Masuda Y, Shichinohe Y, Narimatsu E, Namiki A. Effect of free radical scavengers on diaphragmatic contractility in septic peritonitis. Am J Respir Crit Care Med. 2000;162:2159–65.

    Article  CAS  PubMed  Google Scholar 

  18. Rittirsch D, Huber-Lang MS, Fileri MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4:31–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dyson A, Cone S, Singer M, Ackland GL. Microvascular and macrovascular flow are uncoupled in early polymicrobial sepsis. Br J Anaesth. 2012;108:973–8.

    Article  CAS  PubMed  Google Scholar 

  20. Hirata N, Shim YH, Pravdic D, Lohr NL, Pratt PF Jr, Weihrauch D, Kersten JR, Warltier DC, Bosnjak ZJ, Bienengraeber M. Isoflurane differentially modulates mitochondrial reactive oxygen species production via forward versus reverse electron transport flow: implications for preconditioning. Anesthesiology. 2011;115:531–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moshage H, Kok B, Huizenga JR, Jansen PL. Nitrite and nitrate determinations in plasma: a critical evaluation. Clin Chem. 1995;41:892–6.

    CAS  PubMed  Google Scholar 

  22. Cauwels A, Buys ES, Thoonen R, Geary L, Delanghe J, Shiva S, Brouckaert P. Nitrite protects against morbidity and mortality associated with TNF- or LPS-induced shock in a soluble guanylate cyclase-dependent manner. J Exp Med. 2009;206:2915–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Serita R, Morisaki H, Ai K, Morita Y, Innami Y, Satoh T, Kosugi S, Kotake Y, Takeda J. Sevoflurane preconditions stunned myocardium in septic but not healthy isolated rat hearts. Br J Anaesth. 2002;89:896–903.

    Article  CAS  PubMed  Google Scholar 

  24. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med. 2008;36:1701–6.

    Article  PubMed  Google Scholar 

  25. Baker JE, Su J, Fu X, Hsu A, Gross GJ, Tweddell JS, Hogg N. Nitrite confers protection against myocardial infarction: role of xanthine oxidoreductase, NADPH oxidase and K(ATP) channels. J Mol Cell Cardiol. 2007;43:437–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Duranski MR, Greer JJ, Dejam A, Jaganmohan S, Hogg N, Langston W, Patel RP, Yet SF, Wang X, Kevil CG, Gladwin MT, Lefer DJ. Cytoprotective effects of nitrite during in vivo ischemia-reperfusion of the heart and liver. J Clin Invest. 2005;115:1232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pickerodt PA, Emery MJ, Zarndt R, Martin W, Francis RC, Boemke W, Swenson ER. Sodium nitrite mitigates ventilator-induced lung injury in rats. Anesthesiology. 2012;117:592–601.

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Samouilov A, Liu X, Zweier JL. Characterization of the magnitude and kinetics of xanthine oxidase-catalyzed nitrate reduction: evaluation of its role in nitrite and nitric oxide generation in anoxic tissues. Biochemistry. 2003;42:1150–9.

    Article  CAS  PubMed  Google Scholar 

  29. Hinkle PC. P/O ratio of mitochondrial oxidative phosphorylation. Biochim Biophys Acta. 2005;1706:1–11.

    Article  CAS  PubMed  Google Scholar 

  30. Miyamoto S, Rubio M, Sussman MA. Nuclear and mitochondrial signalling Akts in cardiomyocytes. Cardiovasc Res. 2009;82:272–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cherry AD, Piantadosi CA. Regulation of mitochondrial biogenesis and its intersection with inflammatory responses. Antioxid Redox Signal. 2015;22:965–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Szabó C, Módis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock. 2010;34(Suppl 1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Meyer J, Traber DL. Nitric oxide and endotoxin shock. Cardiovasc Res. 1992;26:558.

    Article  CAS  PubMed  Google Scholar 

  34. Cauwels A, Vandendriessche B, Bultinck J, Descamps B, Rogge E, Van Nieuwenhuysen T, Sips M, Vanhove C, Brouckaert P. TLR2 activation causes no morbidity or cardiovascular failure, despite excessive systemic nitric oxide production. Cardiovasc Res. 2013;100:28–35.

    Article  CAS  PubMed  Google Scholar 

  35. Kimmoun A, Louis H, Al Kattani N, Delemazure J, Dessales N, Wei C, Marie PY, Issa K, Levy B. β1-Adrenergic inhibition improves cardiac and vascular function in experimental septic shock. Crit Care Med. 2015;43:e332–40.

    Article  CAS  PubMed  Google Scholar 

  36. Knowlton AA, Chen L, Malik ZA. Heart failure and mitochondrial dysfunction: the role of mitochondrial fission/fusion abnormalities and new therapeutic strategies. J Cardiovasc Pharmacol. 2014;63:196–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu LL, Ji Y, Dong LW, Liu MS. Calcium uptake by the sarcoplasmic reticulum is impaired during the hypodynamic phase of sepsis in the rat heart. Shock. 2011;15:49–55.

    Google Scholar 

  38. Celes MR, Malvestio LM, Suadicani SO, Prado CM, Figueiredo MJ, Campos EC, Freitas AC, Spray DC, Tanowitz HB, da Silva JS, Rossi MA. Disruption of calcium homeostasis in cardiomyocytes underlies cardiac structural and functional changes in severe sepsis. PLoS One. 2013;8:e68809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. WilliamS GS, Boyman L, Chikando AC, Khairallah RJ, Lederer WJ. Mitochondiral calcium uptake. Proc Natl Acad Sci USA. 2013;110:10479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by the Japan Society for the Promotion of Science (JSPS; Tokyo, Japan); Grant Nos. 25861724 and 15K20348.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoyuki Hirata.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, R., Hirata, N., Tokinaga, Y. et al. Nitrite administration improves sepsis-induced myocardial and mitochondrial dysfunction by modulating stress signal responses. J Anesth 31, 885–894 (2017). https://doi.org/10.1007/s00540-017-2417-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-017-2417-0

Keywords

Navigation