Skip to main content

Advertisement

Log in

Effect of sevoflurane on human hepatocellular carcinoma HepG2 cells under conditions of high glucose and insulin

  • Short Communication
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Diabetes mellitus is associated with morbidity and progression of some cancers, such as hepatocellular carcinoma. It has been reported that sevoflurane, a volatile anesthetic agent commonly used in cancer surgery, can lead to lower overall survival rates than those observed when propofol is used to treat cancer patients, and sevoflurane increases cancer cell proliferation in in vitro studies. It has been also reported that glucose levels in rats anesthetized with sevoflurane were higher than those in rats anesthetized with propofol. We investigated the effect of sevoflurane, under conditions of high glucose and insulin, on cell proliferation in the human hepatocellular carcinoma cell line, HepG2. First, we exposed HepG2 cells to sevoflurane at 1 or 2 % concentration for 6 h in various glucose concentrations and then evaluated cell proliferation using the MTT assay. Subsequently, to mimic diabetic conditions observed during surgery, HepG2 cells were exposed to sevoflurane at 1 or 2 % concentration in high glucose concentrations at various concentrations of insulin for 6 h. One-percent sevoflurane exposure enhanced cell proliferation under conditions of high glucose, treated with 0.05 mg/l insulin. Our study implies that sevoflurane may affect cell proliferation in human hepatocellular carcinoma cells in a physiological situation mimicking that of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Wang C, Wang X, Gong G, Ben Q, Qiu W, Chen Y, Li G, Wang L. Increased risk of hepatocellular carcinoma in patients with diabetes mellitus: a systematic review and meta-analysis of cohort studies. Int J Cancer. 2012;130:1639–48.

    Article  CAS  PubMed  Google Scholar 

  2. Tanaka K, Tsuji I, Tamakoshi A, Matsuo K, Wakai K, Nagata C, Mizoue T, Inoue M, Tsugane S, Sasazuki S. Diabetes mellitus and liver cancer risk: an evaluation based on a systematic review of epidemiologic evidence among the Japanese population. Jpn J Clin Oncol. 2014;44:986–99.

    Article  PubMed  Google Scholar 

  3. Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, Zhang H, Li Z. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.

    Article  PubMed  Google Scholar 

  4. Enlund M, Berglund A, Andreasson K, Cicek C, Enlund A, Bergkvist L. The choice of anaesthetic—sevoflurane or propofol—and outcome from cancer surgery: a retrospective analysis. Ups J Med Sci. 2014;119:251–61.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Ecimovic P, McHugh B, Murray D, Doran P, Buggy DJ. Effects of sevoflurane on breast cancer cell function in vitro. Anticancer Res. 2013;33:4255–60.

    CAS  PubMed  Google Scholar 

  6. Lucchinetti E, Zeisberger SM, Baruscotti I, Wacker J, Feng J, Zaugg K, Dubey R, Zisch AH, Vaugg M. Stem cell-like human endothelial progenitors show enhanced colony-forming capacity after brief sevoflurane exposure: preconditioning of angiogenic cells by volatile anesthetics. Anesth Analg. 2009;109:1117–26.

    Article  CAS  PubMed  Google Scholar 

  7. Sato K, Kitamura T, Kawamura G, Mori Y, Sato R, Araki Y, Yamada Y. Glucose use in fasted rats under sevoflurane anesthesia and propofol anesthesia. Anesth Analg. 2013;117:627–33.

    Article  CAS  PubMed  Google Scholar 

  8. Kitamura T, Sato K, Kawamura G, Yamada Y. The involvement of adenosine triphosphate-sensitive potassium channels in the different effects of sevoflurane and propofol on glucose metabolism in fed rats. Anesth Analg. 2012;114:110–6.

    Article  CAS  PubMed  Google Scholar 

  9. Benzonana LL, Perry NJ, Watts HR, Yang B, Perry IA, Coombes C, Takata M, Ma D. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia-inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013;119:593–605.

    Article  CAS  PubMed  Google Scholar 

  10. Kawaraguchi Y, Horikawa YT, Murphy AN, Murray F, Miyanohara A, Ali SS, Head BP, Patel PM, Roth DM, Patel HH. Volatile anesthetics protect cancer cells against tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis via caveolins. Anesthesiology. 2011;115:499–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Feng YH, Lin CY, Huang WT, Wu CL, Fang JL, Tsao CJ. Diabetes mellitus impairs the response to intra-arterial chemotherapy in hepatocellular carcinoma. Med Oncol. 2011;28:1080–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kudoh A, Katagai H, Takazawa T. Sevoflurane increases glucose transport in skeletal muscle cells. Anesth Analg. 2002;95:123–8.

    Article  CAS  PubMed  Google Scholar 

  13. Loop T, Dovi-Akue D, Frick M, Roesslein M, Egger L, Humar M, Hoetzel A, Schmidt R, Borner C, Pahl H, Geiger K, Pannen BJ. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro. Anesthesiology. 2005;102:1147–57.

    Article  CAS  PubMed  Google Scholar 

  14. Matsuoka H, Kurosawa S, Horinouchi T, Kato M, Hashimoto Y. Inhalation anesthetics induce apoptosis in normal peripheral lymphocytes in vitro. Anesthesiology. 2001;95:1467–72.

    Article  CAS  PubMed  Google Scholar 

  15. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97:1331–9.

    Article  CAS  PubMed  Google Scholar 

  16. Kotani N, Hashimoto H, Sessler DI, Kikuchi A, Suzuki A, Takahashi S, Muraoka M, Matsuki A. Intraoperative modulation of alveolar macrophage function during isoflurane and propofol anesthesia. Anesthesiology. 1998;89:1125–32.

    Article  CAS  PubMed  Google Scholar 

  17. Woods GM, Griffiths DM. Reversible inhibition of natural killer cell activity by volatile anaesthetic agents in vitro. Br J Anaesth. 1986;58:535–9.

    Article  CAS  PubMed  Google Scholar 

  18. Eisenstein TK, Hilburger ME. Opioid modulation of immune responses: effects on phagocyte and lymphoid cell populations. J Neuroimmunol. 1998;83:36–44.

    Article  CAS  PubMed  Google Scholar 

  19. Peterson PK, Molitor TW, Chao CC. Mechanisms of morphine-induced immunomodulation. Biochem Pharmacol. 1993;46:343–8.

    Article  CAS  PubMed  Google Scholar 

  20. Sacerdote P, Manfredi B, Mantegazza P, Panerai AE. Antinociceptive and immunosuppressive effects of opiate drugs: a structure-related activity study. Br J Pharmacol. 1997;121:834–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nishiwada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishiwada, T., Kawaraguchi, Y., Uemura, K. et al. Effect of sevoflurane on human hepatocellular carcinoma HepG2 cells under conditions of high glucose and insulin. J Anesth 29, 805–808 (2015). https://doi.org/10.1007/s00540-015-2025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-015-2025-9

Keywords

Navigation