Skip to main content

Advertisement

Log in

Direct effects of Rho-kinase inhibitor on pial microvessels in rabbits

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Rho-kinase inhibitor is widely used for prevention of cerebral vascular spasm. However, the cerebral pial vascular action of Rho-kinase inhibitor has not been investigated. We therefore evaluated the direct effects of Y-27632, a Rho-kinase inhibitor, on pial microvessels.

Method

Experiments were performed on anesthetized rabbits. A closed cranial window was used to visualize the pial microcirculation. After baseline hemodynamic and pial vascular measurements, the cranial window was superfused with four increasing concentrations of Y-27632 (10−9, 10−7, 10−6, 10−5 mol l−1; n = 7) dissolved in artificial cerebrospinal fluid for 7 min each. We measured the diameters of pial vessels, mean arterial pressure (MAP), heart rate (HR), and rectal temperature at 7 min after application of each Y-27632 concentration.

Results

MAP, HR, rectal temperature, arterial pH, PaCO2, PaO2, and plasma Na+, K+ and glucose concentrations did not change significantly during the experimental period. Y-27632 at 10−9 to 10−7 mol l−1 did not produce any significant change in pial arterioles. Topical application of Y-27632 at 10−6 and 10−5 mol l−1 produced pial large (8.4 ± 5.7 and 19.8 ± 12.7 %) and small (10.1 ± 8.5 and 18.1 ± 12.3 %) arterioles dilation. However, Y-27632 did not produce any change in pial large and small venules.

Conclusion

We evaluated the direct effects of Y-27632 on pial microvessels. Y-27632 dilates only pial arterioles in a concentration-dependent manner, and most at a concentration of 10−5 mol l−1. Y-27632 is a potent cerebral pial arteriolar dilator but is not a venular dilator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Fenf J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 1996;3:245–8.

    Article  Google Scholar 

  2. Kureishi Y, Kobayashi S, Amano M, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem. 1997;272:12257–60.

    Article  CAS  PubMed  Google Scholar 

  3. Amano M, Ito M, Kimura K, Fukata Y, Chihara K, Nakano T, Matsuura Y, Kaibuchi K. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996;271:20246–9.

    Article  CAS  PubMed  Google Scholar 

  4. Matsui T, Amano M, Yamamoto T, Chihara K, Nakafuku M, Ito M, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Rho-associated kinase, a novel serine/threonine kinase, as a putative target for small GTP binding protein Rho. EMBO J. 1996;15:2208–16.

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Leung T, Manser E, Tan L, Lim L. A novel serine/threonine kinase binding the Ras-related RhoA GTPase which translocates the kinase to peripheral membranes. J Biol Chem. 1995;270:29051–4.

    Article  CAS  PubMed  Google Scholar 

  6. Ishizaki T, Maekawa M, Fujisawa K, Okawa K, Iwamatsu A, Fujita A, Watanabe N, Saito Y, Kakizuka A, Morii N, Narumiya S. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase. EMBO J. 1996;15:1885–93.

    PubMed Central  CAS  PubMed  Google Scholar 

  7. Gupta V, Gupta N, Shaik IH, Mehvar R, McMurtry IF, Oka M, Nozik-Grayck E, Komatsu M, Ahsan F. Liposomal fasudil, a rho-kinase inhibitor, for prolonged pulmonary preferential vasodilation in pulmonary arterial hypertension. J Control Release. 2013;167:189–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Kun X, Lefeng W, Rongjing D, Xincun Y. RhoA/ROK pathway related to the mechanism of higher susceptibility to spasm in RA than IMA. J Card Surg. 2009;24:766–71.

    Article  PubMed  Google Scholar 

  9. Ito I, Jarajapu YP, Grant MB, Knot HJ. Characteristics of myogenic tone in the rat ophthalmic artery. Am J Physiol Heart Circ Physiol. 2007;292:H360–8.

    Article  CAS  PubMed  Google Scholar 

  10. Bagi Z, Feher A, Cassuto J, Akula K, Labinskyy N, Kaley G, Koller A. Increased availability of angiotensin AT1 receptors leads to sustained arterial constriction to angiotensin II in diabetes—role for Rho-kinase activation. Br J Pharmacol. 2011;163:1059–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Takemoto M, Sun J, Hiroki J, Shimokawa H, Liao JK. Rho-kinase mediated hypoxia-induced downregulation of endothelial nitric oxide synthase. Circulation. 2002;106:57–62.

    Article  CAS  PubMed  Google Scholar 

  12. Ishiyama T, Shibuya K, Ichikawa M, Masamune T, Kiuchi R, Sessler DI, Matsukawa T. Cerebral pial vascular changes under propofol or sevoflurane anesthesia during global cerebral ischemia and reperfusion in rabbits. J Neurosurg Anesthesiol. 2010;22:207–13.

    Article  PubMed  Google Scholar 

  13. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature (Lond). 1994;372:231–6.

    Article  CAS  Google Scholar 

  14. Bevan JA, Duckworth J, Laher I, Oriowo MA, McPherson GA, Bevan RD. Sympathetic control of cerebral arteries: specialization in receptor type, reserve, affinity, and distribution. FASEB J. 1987;1:193–8.

    CAS  PubMed  Google Scholar 

  15. Hartl R, Joshi S, Levine S, Wang M, Sciacca RR. Pial arterial response to topical verapamil in acute closed cranial windows in rabbits. Anesth Analg. 2005;100:1140–6.

    Article  CAS  PubMed  Google Scholar 

  16. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol. 2005;25:1767–75.

    Article  CAS  PubMed  Google Scholar 

  17. Masumoto A, Mohri M, Shimokawa H, Urakami L, Usui M, Takeshita A. Suppression of coronary artery spasm by the Rho-kinase inhibitor fasudil in patients with vasospastic angina. Circulation. 2002;105:1545–7.

    Article  CAS  PubMed  Google Scholar 

  18. Inokuchi K, Ito A, Fukumoto Y, Matoba T, Shiose A, Nishida T, Masuda M, Morita S, Shimokawa H. Usefulness of fasudil, a Rho-kinase inhibitor, to treat intractable severe coronary spasm after coronary artery bypass surgery. J Cardiovasc Pharmacol. 2004;44:275–7.

    Article  CAS  PubMed  Google Scholar 

  19. Eto Y, Shimokawa H, Hiroki J, Morishige K, Kandabashi T, Matsumoto Y, Amano M, Hoshijima M, Kaibuchi K, Takeshita A. Gene transfer of dominant negative Rho kinase suppresses neointimal formation after balloon injury in pigs. Am J Physiol Heart Circ Physiol. 2000;278:H1744–50.

    CAS  PubMed  Google Scholar 

  20. Morishige K, Shimokawa H, Eto Y, Kandabashi T, Miyata K, Matsumoto Y, Kaibuchi K, Takeshita A. Adenovirus-mediated transfer of dominant-negative rho-kinase induces a regression of coronary arteriosclerosis in pigs in vivo. Arterioscler Thromb Vasc Biol. 2001;21:548–54.

    Article  CAS  PubMed  Google Scholar 

  21. Shimokawa H, Morishige K, Miyata K, Kandabashi T, Eto Y, Ikegaki I, Asao T, Kaibuchi K, Takeshita A. Long-term inhibition of Rho-kinase induces a regression of arteriosclerotic coronary lesions in a porcine model in vivo. Cardiovasc Res. 2001;51:169–77.

    Article  CAS  PubMed  Google Scholar 

  22. Uehata M, Ishizaki T, Satoh H, Ono T, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature (Lond). 1997;389:990–4.

    Article  CAS  Google Scholar 

  23. Masumoto A, Hirooka Y, Shimokawa H, Hironaga K, Setoguchi S, Takeshita A. Possible involvement of Rho-kinase in the pathogenesis of hypertension in humans. Hypertension. 2001;38:1307–10.

    Article  CAS  PubMed  Google Scholar 

  24. Abe K, Shimokawa H, Morikawa K, Uwatoku T, Oi K, Matsumoto Y, Hattori T, Nakashima Y, Kaibuchi K, Sueishi K, Takeshita A. Long-term treatment with a rho-kinase inhibitor improves monocrotaline-induced fatal pulmonary hypertension in rats. Circ Res. 2004;94:385–93.

    Article  CAS  PubMed  Google Scholar 

  25. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M. Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med. 2005;171:494–9.

    Article  PubMed  Google Scholar 

  26. Fukumoto Y, Matoba T, Ito A, Tanaka H, Kishi T, Hayashidani S, Abe K, Takeshita A, Shimokawa H. Acute vasodilator effects of a Rho-kinase inhibitor, fasudil, in patients with severe pulmonary hypertension. Heart. 2005;91:391–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. James SE, Dunham M, Carrion-Jones M, Murashov A, Lu Q. Rho kinase inhibitor Y-27632 facilitates recovery from experimental peripheral neuropathy induced by anti-cancer drug cisplatin. Neurotoxicology. 2010;31:188–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Gauthaman K, Fong CY, Bongso A. Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion. Stem Cell Rev. 2010;6:86–95.

    Article  CAS  PubMed  Google Scholar 

  29. Minase T, Ishima T, Itoh K, Hashimoto K. Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: a possible role of IP receptors. Eur J Pharmacol. 2010;648:67–73.

    Article  CAS  PubMed  Google Scholar 

  30. Satoh S, Utsunomiya T, Tsurui K, Kobayashi T, Ikegaki I, Sasaki Y, Asano T. Pharmacological profile of hydroxy fasudil as a selective rho kinase inhibitor on ischemic brain damage. Life Sci. 2001;69:1441–53.

    Article  CAS  PubMed  Google Scholar 

  31. Toshima Y, Satoh S, Ikegaki I, Asano T. A new model of cerebral microthrombosis in rats and the neuroprotective effect of a Rho-kinase inhibitor. Stroke. 2000;31:2245–50.

    Article  CAS  PubMed  Google Scholar 

  32. Iizuka K, Shimizu Y, Tsukagoshi H, Yoshii A, Harada T, Dobashi K, Murozono T, Nakazawa T, Mori M. Evaluation of Y-27632, a rho-kinase inhibitor, as a bronchodilator in guinea pigs. Eur J Pharmacol. 2000;406:273–9.

    Article  CAS  PubMed  Google Scholar 

  33. Honjo M, Inatani M, Kido N, Sawamura T, Yue BY, Honda Y, Tanihara H. Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Arch Ophthalmol. 2001;119:1171–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ito K, Yoshioka K, Akedo H, Uehata M, Ishizaki T, Narumiya S. An essential part for Rho-associated kinase in the transcellular invasion of tumor cells. Nat Med. 1999;5:221–5.

    Article  Google Scholar 

  35. Kanda T, Wakino S, Homma K, Yoshioka K, Tatematsu S, Hasegawa K, Takamatsu I, Suano N, Hayashi K, Saruta T. Rho-kinase as a molecular target for insulin resistance and hypertension. FASEB J. 2006;20:169–71.

    CAS  PubMed  Google Scholar 

  36. Ohnaka K, Shimoda S, Nawata H, Shimokawa H, Kaibuchi K, Iwamoto Y, Takayanagi R. Pitavastatin enhanced BMP-2 and osteocalcin expression by inhibition of Rho-associated kinase in human osteoblasts. Biophys Biochem Res Commun. 2001;287:337–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 19591784 and 23592246.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masakazu Kotoda.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotoda, M., Ishiyama, T., Shintani, N. et al. Direct effects of Rho-kinase inhibitor on pial microvessels in rabbits . J Anesth 29, 186–190 (2015). https://doi.org/10.1007/s00540-014-1903-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-014-1903-x

Keywords

Navigation