Skip to main content
Log in

Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Sevoflurane is used widely during lung cancer surgery. However, the effect of sevoflurane on the invasion and migration of lung carcinoma cells remains unclear. The aims of this study were to explore the role of matrix metalloproteinase (MMP)-2 and MMP-9 in the effect of sevofluane on the invasion and the role of fascin and ezrin on the effect of sevofluane on the migration of human lung adenocarcinoma A549 cells. We also investigated whether sevoflurane regulates the expression of these molecules through the p38 mitogen-activated protein kinase (MAPK) signaling pathway.

Methods

The invasion of cells was evaluated using the Transwell invasion assay, and the migration of cells was determined using the wound healing assay. The expression of MMP-2, MMP-9, ezrin, fascin, and phospho-p38 MAPK in cells was determined by western blotting.

Results

A significant inhibition of cell invasion and migration was found in A549 cells which had been treated with sevoflurane. The data also revealed that sevoflurane could decrease the phosphorylation level of p38 MAPK, which is involved in the downregulation of MMP-2, MMP-9, fascin, and ezrin expression, accompanied by a concomitant inhibition of the invasion and migration of A549 cells. SB203580, a p38 MAPK inhibitor, augmented the downregulation of the expression of these proteins.

Conclusion

The anti-invasion effect of sevoflurane on A549 cells was associated with a downregulation of both MMP-2 and MMP-9 expression, while the anti-migration effect was associated with a downregulation of both fascin and ezrin expression. These effects could occur partly as a result of inactivation of the p38 MAPK signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  2. Ludwig C, Stoelben C, Olschewski M, Hasse J. Comparison of morbidity, 30-day mortality, and long-term survival after pneumonectomy and sleeve lobectomy for non-small cell lung carcinoma. Ann Thorac Surg. 2005;79:968–73.

    Article  PubMed  Google Scholar 

  3. Rueth NM, Parsons HM, Habermann EB, Groth SS, Virnig BA, Tuttle TM, Andrade RS, Maddaus MA, D’cunha J. The long-term impact of surgical complications after resection of stage I non-small cell lung cancer: a population-based survival analysis. Ann Surg. 2011;254:368–74.

    Article  PubMed  Google Scholar 

  4. Friedl P, Wolf K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer. 2003;3:362–74.

    Article  PubMed  CAS  Google Scholar 

  5. Snyder GL, Greenberg S. Effect of anaesthetic technique and other perioperative factors on cancer recurrence. Br J Anaesth. 2010;105:106–15.

    Article  PubMed  CAS  Google Scholar 

  6. Gottschalk A, Sharma S, Ford J, Durieux ME, Tiouririne M. Review article: the role of the perioperative period in recurrence after cancer surgery. Anesth Analg. 2010;110:1636–43.

    Article  PubMed  Google Scholar 

  7. Kvolik S, Glavas-Obrovac L, Bares V, Karner I. Effects of inhalation anesthetics halothane, sevoflurane, and isoflurane on human cell lines. Life Sci. 2005;77:2369–83.

    Article  PubMed  CAS  Google Scholar 

  8. Kvolik S, Dobrosevic B, Marczi S, Prlic L, Glavas-Obrovac L. Different apoptosis ratios and gene expressions in two human cell lines after sevoflurane anaesthesia. Acta Anaesthesiol Scand. 2009;53:1192–9.

    Article  PubMed  CAS  Google Scholar 

  9. Kessenbrock K, Plaks V, Werb Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell. 2010;141:52–67.

    Article  PubMed  CAS  Google Scholar 

  10. Hashimoto Y, Skacel M, Adams JC. Roles of fascin in human carcinoma motility and signaling: Prospects for a novel biomarker? Int J Biochem Cell Biol. 2005;7:1787–804.

    Article  Google Scholar 

  11. Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med. 2004;10:201–4.

    Article  PubMed  CAS  Google Scholar 

  12. Mao L, Yuan L, Slakey LM, Jones FE, Burow ME, Hill SM. Inhibition of breast cancer cell invasion by melatonin is mediated through regulation of the p38 mitogen-activated protein kinase signaling pathway. Breast Cancer Res. 2010;12:R107.

    Article  PubMed  CAS  Google Scholar 

  13. Wynne S, Djakiew D. NSAID inhibition of prostate cancer cell migration is mediated by Nag-1 Induction via the p38 MAPK-p75(NTR) pathway. Mol Cancer Res. 2010;8:1656–64.

    Article  PubMed  CAS  Google Scholar 

  14. Loop T, Scheiermann P, Doviakue D, Musshoff F, Humar M, Roesslein M, Hoetzel A, Schmidt R, Madea B, Geiger KK, Pahl HL, Pannen BH. Sevoflurane inhibits phorbol-myristate-acetate-induced activator protein-1 activation in human T lymphocytes in vitro: potential role of the p38-stress kinase pathway. Anesthesiology. 2004;101:710–21.

    Article  PubMed  CAS  Google Scholar 

  15. Roesslein M, Frick M, Auwaerter V, Humar M, Goebel U, Schwer C, Geiger KK, Pahl HL, Pannen BH, Loop T. Sevoflurane-mediated activation of p38-mitogen-activated stressskinase is independent of apoptosis in Jurkat T-cells. Anesth Analg. 2008;106:1150–60.

    Article  PubMed  CAS  Google Scholar 

  16. Coffey JC, Wang JH, Smith MJ, Bouchier-Hayes D, Cotter TG, Redmond HP. Excisional surgery for cancer cure: therapy at a cost. Lancet Oncol. 2003;4:760–8.

    Article  PubMed  CAS  Google Scholar 

  17. Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg. 2000;232:58–65.

    Article  PubMed  CAS  Google Scholar 

  18. Chetty C, Rao JS, Lakka SS. Matrix metalloproteinase pharmacogenomics in non-small-cell lung carcinoma. Pharmacogenomics. 2011;12:535–46.

    Article  PubMed  CAS  Google Scholar 

  19. Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295:2387–92.

    Article  PubMed  CAS  Google Scholar 

  20. Iniesta P, Morán A, De Juan C, Gómez A, Hernando F, García-Aranda C, Frías C, Díaz-López A, Rodríguez-Jiménez FJ, Balibrea JL, Benito M. Biological and clinical significance of MMP-2, MMP-9, TIMP-1 and TIMP-2 in non-small cell lung cancer. Oncol Rep. 2007;17:217–23.

    PubMed  CAS  Google Scholar 

  21. Jayo A, Parsons M. Fascin: a key regulator of cytoskeletal dynamics. Int J Biochem Cell Biol. 2010;42(10):1614–7.

    Article  PubMed  CAS  Google Scholar 

  22. Yoder BJ, Tso E, Skacel M, Pettay J, Tarr S, Budd T, Tubbs RR, Adams JC, Hicks DG. The expression of fascin, an actin-bundling motility protein, correlates with hormone receptor-negative breast cancer and a more aggressive clinical course. Clin Cancer Res. 2005;11:186–92.

    PubMed  CAS  Google Scholar 

  23. Hashimoto Y, Skacel M, Lavery IC, Mukherjee AL, Casey G, Adams JC. Prognostic significance of fascin expression in advanced colorectal cancer: an immunohistochemical study of colorectal adenomas and adenocarcinomas. BMC Cancer. 2006;6:241.

    Article  PubMed  Google Scholar 

  24. Li Q, Wu M, Wang H, Xu G, Zhu T, Zhang Y, Liu P, Song A, Gang C, Han Z, Zhou J, Meng L, Lu Y, Wang S, Ma D. Ezrin silencing by small hairpin RNA reverses metastatic behaviors of human breast cancer cells. Cancer Lett. 2008;261:55–63.

    Article  PubMed  CAS  Google Scholar 

  25. Ma L, Liu YP, Geng CZ, Xing LX, Zhang XH. Low-dose epirubicin inhibits ezrin-mediated metastatic behavior of breast cancer cells. Tumori. 2011;97:400–5.

    PubMed  CAS  Google Scholar 

  26. Bruce B, Khanna G, Ren L, Landberg G, Jirström K, Powell C, Borczuk A, Keller ET, Wojno KJ, Meltzer P, Baird K, McClatchey A, Bretscher A, Hewitt SM, Khanna C. Expression of the cytoskeleton linker protein ezrin in human cancers. Clin Exp Metastasis. 2007;24:69–78.

    Article  PubMed  CAS  Google Scholar 

  27. Wagner EF. Nebreda AR.Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9:537–49.

    Article  PubMed  CAS  Google Scholar 

  28. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773:1358–75.

    Article  PubMed  CAS  Google Scholar 

  29. Dhanasekaran DN, Johnson GL. MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene. 2007;26:3097–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Foshan Science and Technology Agency (grant no. 20111021010026 to Dr. H. Liang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengxiang Yang.

About this article

Cite this article

Liang, H., Gu, M., Yang, C. et al. Sevoflurane inhibits invasion and migration of lung cancer cells by inactivating the p38 MAPK signaling pathway. J Anesth 26, 381–392 (2012). https://doi.org/10.1007/s00540-011-1317-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1317-y

Keywords

Navigation