Skip to main content

Advertisement

Log in

Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol

  • Review Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

The intravenous anesthetic propofol has a number of well-known nonanesthetic effects, including anti-oxidation and anti-emesis. Another interesting nonanesthetic effect of propofol may be its cyclooxygenase (COX)-inhibiting activity. This activity may have important clinical implications, as propofol could have antitumor properties through COX inhibition. Propofol could counteract the activity of COX, which elicits, via its major product prostaglandin E2, (1) tumor growth stimulation, (2) increased tumor survival, (3) enhanced tumor invasiveness, (4) stimulation of new vessel formation, and (5) tumor evasion of host immune surveillance through suppression of immune cell functions. Indeed, accumulated evidence indicates that propofol suppresses the proliferation, motility, and invasiveness of tumors in vitro and in vivo. Therefore, propofol could be a particularly suitable anesthetic for use during the perioperative period for cancer surgery. However, whether the COX-inhibiting activity of propofol is related to the reported antitumor properties of propofol is not known. Definitive evidence remains to be provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102.

    Article  PubMed  CAS  Google Scholar 

  2. Jones DA, Carlton DP, McIntyre TM, Zimmerman GA, Prescott SM. Molecular cloning of human prostaglandin endoperoxide synthase type II and demonstration of expression in response to cytokines. J Biol Chem. 1993;268:9049–54.

    PubMed  CAS  Google Scholar 

  3. Vasileiou I, Xanthos T, Koudouna E, Perrea D, Klonaris C, Katsargyris A, Papadimitriou L. Propofol: a review of its non-anaesthetic effects. Eur J Pharmacol. 2009;605:1–8.

    Article  PubMed  CAS  Google Scholar 

  4. Rizzo MT. Cyclooxygenase-2 in oncogenesis. Clin Chim Acta. 2011;412:671–87.

    Article  PubMed  CAS  Google Scholar 

  5. Pozzi A, Yan X, Macias-Perez I, Wei S, Hata AN, Breyer RM, Morrow JD, Capdevila JH. Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem. 2004;279:29797–804.

    Article  PubMed  CAS  Google Scholar 

  6. Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58:362–6.

    PubMed  CAS  Google Scholar 

  7. Greenhough A, Wallam CA, Hicks DJ, Moorghen M, Williams AC, Paraskeva C. The proapoptotic BH3-only protein Bim is downregulated in a subset of colorectal cancers and is repressed by antiapoptotic COX-2/PGE(2) signalling in colorectal adenoma cells. Oncogene. 2010;29:3398–410.

    Article  PubMed  CAS  Google Scholar 

  8. Krysan K, Dalwadi H, Sharma S, Pold M, Dubinett S. Cyclooxygenase 2-dependent expression of survivin is critical for apoptosis resistance in non-small cell lung cancer. Cancer Res. 2004;64:6359–62.

    Article  PubMed  CAS  Google Scholar 

  9. Yen JH, Khayrullina T, Ganea D. PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood. 2008;111:260–70.

    Article  PubMed  CAS  Google Scholar 

  10. Jain S, Chakraborty G, Raja R, Kale S, Kundu GC. Prostaglandin E2 regulates tumor angiogenesis in prostate cancer. Cancer Res. 2008;68:7750–9.

    Article  PubMed  CAS  Google Scholar 

  11. Richardsen E, Uglehus RD, Due J, Busch C, Busund LT. COX-2 is overexpressed in primary prostate cancer with metastatic potential and may predict survival. A comparison study between COX-2, TGF-beta, IL-10 and Ki67. Cancer Epidemiol. 2010;34:316–22.

    Article  PubMed  CAS  Google Scholar 

  12. Denkert C, Winzer KJ, Muller BM, Weichert W, Pest S, Kobel M, Kristiansen G, Reles A, Siegert A, Guski H, Hauptmann S. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer (Phila). 2003;97:2978–87.

    Article  CAS  Google Scholar 

  13. Bocca C, Bozzo F, Bassignana A, Miglietta A. Antiproliferative effects of COX-2 inhibitor celecoxib on human breast cancer cell lines. Mol Cell Biochem. 2011;350:59–70.

    Article  PubMed  CAS  Google Scholar 

  14. Mantovani G, Maccio A, Madeddu C, Serpe R, Antoni G, Massa E, Dessl M, Panzone F. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med. 2010;88:85–92.

    Article  PubMed  CAS  Google Scholar 

  15. Elmets CA, Viner JL, Pentland AP, Cantrell W, Lin HY, Bailey H, Kang S, Linden KG, Heffeman M, Duvic M, Richmond E. Chemoprevention of nonmelanoma skin cancer with celecoxib: a randomized, double-blind, placebo-controlled trial. J Natl Cancer Inst. 2010;102:1835–44.

    Article  PubMed  CAS  Google Scholar 

  16. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377:31–41.

    Article  PubMed  CAS  Google Scholar 

  17. Baxevanis CN, Reclos GJ, Gritzapis AD, Dedousis GV, Missitzis I, Papamichail M. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer. Cancer (Phila). 1993;72:491–501.

    Article  CAS  Google Scholar 

  18. Harizi H, Juzan M, Pitard V, Moreau JF, Gualde N. Cyclooxygenase-2-issued prostaglandin E2 enhances the production of endogenous IL-10, which down-regulates dendritic cell functions. J Immunol. 2002;168:2255–63.

    PubMed  CAS  Google Scholar 

  19. Sharma S, Yang SC, Zhu L, Reckamp K, Gardner B, Baratelli F, Huang M, Batra RK, Dubinett SM. Tumor cyclooxygenase-2/prostaglandin E2-dependent promotion of FOXP3 expression and CD4+ CD25+ T regulatory cell activities in lung cancer. Cancer Res. 2005;65:5211–20.

    Article  PubMed  CAS  Google Scholar 

  20. Eruslanov E, Daurkin I, Ortiz J, Vieweg J, Kusmartsev S. Tumor-mediated induction of myeloid-derived suppressor cells and M2-polarized macrophages by altering intracellular PGE(2) catabolism in myeloid cells. J Leukoc Biol. 2010;88:839–48.

    Article  PubMed  CAS  Google Scholar 

  21. Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res. 2007;67:4507–13.

    Article  PubMed  CAS  Google Scholar 

  22. Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008;99:1501–6.

    Article  PubMed  CAS  Google Scholar 

  23. Midgley RS, McConkey CC, Johnstone EC, Dunn JA, Smith JL, Grumett SA, Julier P, Iveson C, Yanagisawa Y, Warren B, Langman MJ, Kerr DJ. Phase III randomized trial assessing rofecoxib in the adjuvant setting of colorectal cancer: final results of the VICTOR trial. J Clin Oncol. 2010;28:4575–80.

    Article  PubMed  CAS  Google Scholar 

  24. Inada T, Kubo K, Kambara T, Shingu K. Propofol inhibits cyclo-oxygenase activity in human monocytic THP-1 cells. Can J Anaesth. 2009;56:222–9.

    Article  PubMed  Google Scholar 

  25. Kambara T, Inada T, Kubo K, Shingu K. Propofol suppresses prostaglandin E(2) production in human peripheral monocytes. Immunopharmacol Immunotoxicol. 2009;31:117–26.

    Article  PubMed  CAS  Google Scholar 

  26. Inada T, Kubo K, Shingu K. Promotion of interferon-gamma production by natural killer cells via suppression of murine peritoneal macrophage prostaglandin E2 production using intravenous anesthetic propofol. Int Immunopharmacol. 2010;10:1200–8.

    Article  PubMed  CAS  Google Scholar 

  27. Furukawa K, Yamamori H, Takagi K, Hayashi N, Suzuki R, Nakajima N, Tashiro T. Influences of soybean oil emulsion on stress response and cell-mediated immune function in moderately or severely stressed patients. Nutrition. 2002;18:235–40.

    Article  PubMed  CAS  Google Scholar 

  28. Matsuura M, Saito S, Hirai Y, Okamura H. A pathway through interferon-gamma is the main pathway for induction of nitric oxide upon stimulation with bacterial lipopolysaccharide in mouse peritoneal cells. Eur J Biochem. 2003;270:4016–25.

    Article  PubMed  CAS  Google Scholar 

  29. Sica A, Porta C. Role of tumor-associated macrophages (TAM) in cancer related inflammation. In: Siemann DW, editor. Tumor microenvironment. West Sussex: Wiley; 2011. p. 77–98.

    Google Scholar 

  30. Elgert KD, Alleva DG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol. 1998;64:275–90.

    PubMed  CAS  Google Scholar 

  31. Tsuchiya M, Asada A, Arita K, Utsumi T, Yoshida T, Sato EF, Utsumi K, Inoue M. Induction and mechanism of apoptotic cell death by propofol in HL-60 cells. Acta Anaesthesiol Scand. 2002;46:1068–74.

    Article  PubMed  CAS  Google Scholar 

  32. Miao YF, Zhang YW, Wan HJ, Chen LB, Wang FY. GABA-receptor agonist, propofol inhibits invasion of colon carcinoma cells. Biomed Pharmacother. 2010;64:583–8.

    Article  PubMed  CAS  Google Scholar 

  33. Mammoto T, Mukai M, Mammoto A, Yamanaka Y, Hayashi Y, Mashimo T, Kishi Y, Nakamura H. Intravenous anesthetic, propofol inhibits invasion of cancer cells. Cancer Lett. 2002;184:165–70.

    Article  PubMed  CAS  Google Scholar 

  34. Sompayrac L. Cancer and the immune system. In: Sompayrac L, editor. How the immune system works. Boston: Blackwell; 2003. p. 109–16.

    Google Scholar 

  35. Melamed R, Bar-Yosef S, Shakhar G, Shakhar K, Ben-Eliyahu S. Suppression of natural killer cell activity and promotion of tumor metastasis by ketamine, thiopental, and halothane, but not by propofol: mediating mechanisms and prophylactic measures. Anesth Analg. 2003;97:1331–9.

    Article  PubMed  CAS  Google Scholar 

  36. Hashimoto H, Araki I, Sato T, Matsuki A. Clinical study on total intravenous anesthesia with droperidol, fentanyl and ketamine-7. Effects on natural killer cell activity. Masui (Jpn J Anesthesiol). 1991;40:912–7. (in Japanese with English abstract).

    CAS  Google Scholar 

  37. Kushida A, Inada T, Shingu K. Enhancement of antitumor immunity after propofol treatment in mice. Immunopharmacol Immunotoxicol. 2007;29:477–86.

    Article  PubMed  CAS  Google Scholar 

  38. Inada T, Kubo K, Shingu K. Vaccines using dendritic cells, differentiated with propofol, enhance antitumor immunity in mice. Immunopharmacol Immunotoxicol. 2009;31:150–7.

    Article  PubMed  CAS  Google Scholar 

  39. Salem ML. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. Int Immunopharmacol. 2005;5:947–60.

    Article  PubMed  CAS  Google Scholar 

  40. Kaizer L, Boyd NF, Kriukov V, Tritchler D. Fish consumption and breast cancer risk: an ecological study. Nutr Cancer. 1989;12:61–8.

    Article  PubMed  CAS  Google Scholar 

  41. Terry P, Lichtenstein P, Feychting M, Ahlbom A, Wolk A. Fatty fish consumption and risk of prostate cancer. Lancet. 2001;357:1764–6.

    Article  PubMed  CAS  Google Scholar 

  42. Siddiqui RA, Zerouga M, Wu M, Castillo A, Harvey K, Zaloga GP, Stillwell W. Anticancer properties of propofol-docosahexaenoate and propofol-eicosapentaenoate on breast cancer cells. Breast Cancer Res. 2005;7:R645–54.

    Article  PubMed  CAS  Google Scholar 

  43. Greenhough A, Smartt HJ, Moore AE, Roberts HR, Williams AC, Paraskeva C, Kaidi A. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis (Oxf). 2009;30:377–86.

    Article  CAS  Google Scholar 

  44. Yamaguchi K, Takagi Y, Aoki S, Futamura M, Saji S. Significant detection of circulating cancer cells in the blood by reverse transcriptase-polymerase chain reaction during colorectal cancer resection. Ann Surg. 2000;232:58–65.

    Article  PubMed  CAS  Google Scholar 

  45. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell. 2006;127:679–95.

    Article  PubMed  CAS  Google Scholar 

  46. Brittenden J, Heys SD, Ross J, Eremin O. Natural killer cells and cancer. Cancer (Phila). 1996;77:1226–43.

    Article  CAS  Google Scholar 

  47. Slade MS, Simmons RL, Yunis E, Greenberg LJ. Immunodepression after major surgery in normal patients. Surgery (St. Louis). 1975;78:363–72.

    CAS  Google Scholar 

  48. Ogawa K, Hirai M, Katsube T, Murayama M, Hamaguchi K, Shimakawa T, Naritake Y, Hosokawa T, Kajiwara T. Suppression of cellular immunity by surgical stress. Surgery (St. Louis). 2000;127:329–36.

    Article  CAS  Google Scholar 

  49. Weissman C. The metabolic response to stress: an overview and update. Anesthesiology. 1990;73:308–27.

    Article  PubMed  CAS  Google Scholar 

  50. Chrousos GP. The hypothalamic–pituitary–adrenal axis and immune-mediated inflammation. N Engl J Med. 1995;332:1351–62.

    Article  PubMed  CAS  Google Scholar 

  51. Shakhar G, Ben-Eliyahu S. In vivo beta-adrenergic stimulation suppresses natural killer activity and compromises resistance to tumor metastasis in rats. J Immunol. 1998;160:3251–8.

    PubMed  CAS  Google Scholar 

  52. Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, Tsukada K, Saiki I. Increased surgical stress promotes tumor metastasis. Surgery (St. Louis). 2003;133:547–55.

    Article  Google Scholar 

  53. Elenkov IJ, Chrousos GP. Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci. 2002;966:290–303.

    Article  PubMed  CAS  Google Scholar 

  54. Tartter PI, Steinberg B, Barron DM, Martinelli G. The prognostic significance of natural killer cytotoxicity in patients with colorectal cancer. Arch Surg. 1987;122:1264–8.

    PubMed  CAS  Google Scholar 

  55. Takeuchi H, Maehara Y, Tokunaga E, Koga T, Kakeji Y, Sugimachi K. Prognostic significance of natural killer cell activity in patients with gastric carcinoma: a multivariate analysis. Am J Gastroenterol. 2001;96:574–8.

    Article  PubMed  CAS  Google Scholar 

  56. Benish M, Bartal I, Goldfarb Y, Levi B, Avraham R, Raz A, Ben-Eliyahu S. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol. 2008;15:2042–52.

    Article  PubMed  Google Scholar 

  57. Glasner A, Avraham R, Rosenne E, Benish M, Zmora O, Shemer S, Meiboon H, Ben-Eliyahu S. Improving survival rates in two models of spontaneous postoperative metastasis in mice by combined administration of a beta-adrenergic antagonist and a cyclooxygenase-2 inhibitor. J Immunol. 2010;184:2449–57.

    Article  PubMed  CAS  Google Scholar 

  58. Deegan CA, Murray D, Doran P, Ecimovic P, Moriarty DC, Buggy DJ. Effect of anaesthetic technique on oestrogen receptor-negative breast cancer cell function in vitro. Br J Anaesth. 2009;103:685–90.

    Article  PubMed  CAS  Google Scholar 

  59. Forget P, Collet V, Lavand’homme P, De Kock M. Does analgesia and condition influence immunity after surgery? Effects of fentanyl, ketamine and clonidine on natural killer activity at different ages. Eur J Anaesthesiol. 2010;27:233–40.

    Article  PubMed  Google Scholar 

  60. Pirttikangas CO, Salo M, Mansikka M, Gronroos J, Pulkki K, Peltola O. The influence of anaesthetic technique upon the immune response to hysterectomy. A comparison of propofol infusion and isoflurane. Anaesthesia. 1995;50:1056–61.

    Article  PubMed  CAS  Google Scholar 

  61. Ren XF, Li WZ, Meng FY, Lin CF. Differential effects of propofol and isoflurane on the activation of T-helper cells in lung cancer patients. Anaesthesia. 2010;65:478–82.

    Article  PubMed  CAS  Google Scholar 

  62. Inada T, Yamanouchi Y, Jomura S, Sakamoto S, Takahashi M, Kambara T, Shingu K. Effect of propofol and isoflurane anaesthesia on the immune response to surgery. Anaesthesia. 2004;59:954–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takefumi Inada.

About this article

Cite this article

Inada, T., Kubo, K. & Shingu, K. Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol. J Anesth 25, 569–575 (2011). https://doi.org/10.1007/s00540-011-1163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-011-1163-y

Keywords

Navigation