Skip to main content
Log in

Nitric oxide donor, NOC7, reveals biphasic effect on contractile force of isolated rat heart after global ischemia

  • Original Article
  • Published:
Journal of Anesthesia Aims and scope Submit manuscript

Abstract

Purpose

Our purpose was to investigate whether the NO donor, 3-(2-hydroxy-1-methyl-2-nitroso-hydrazino)-N-methyl-1-propanamine (NOC7), restored cardiac function following global ischemia in an isolated rat heart model and whether intracellular messengers were involved in its effect.

Methods

Isolated rat hearts (n = 36) were randomly divided into six groups. The sham control group was perfused with modified Krebs-Henseleit bicarbonate buffer (KHB) alone. The ischemic control group and the NOC7 groups were subjected to 35 min of global ischemia, followed by 30 min of reperfusion with KHB alone, or reperfusion with KHB including NOC7 at 0.2, 2, 20, or 200 μM, respectively. Left ventricular developed pressure (LVDP), the maximum and the minimal rate of rise in LVP (±dP/dt), and coronary flow were measured continuously. Cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels were measured in myocardium homogenate, using enzyme immunoassay (EIA) methods.

Results

NOC7 at 2 and 20 μM rescued myocardial performance (LVDP, 111.9 ± 10.5% and 124.3 ± 12.5% of baseline, respectively; P < 0.05 vs ischemic control) at 30 min after reperfusion. However, NOC7 at 200 μM reduced the LVDP to 55.3 ± 6.0% of baseline. Coronary flows remain unchanged. The cAMP levels increased significantly from 0.83 ± 0.44 pmol·mg−1 protein in the ischemic control group to 1.79 ± 0.39, 1.86 ± 0.25, and 2.63 ± 0.24 pmol·mg−1 protein, in the groups with NOC7 at 2, 20, and 200 μM, respectively (P < 0.05). The cGMP level increased from 1.49 ± 0.61 pmol·mg−1 protein in the ischemic control group to 3.92 ± 0.66 pmol·mg−1 protein in the group with NOC7 at 200 μM alone (P < 0.05).

Conclusion

NOC7 appeared to exert a biphasic effect on the contractile force of the isolated rat heart after 35-min global ischemia. The balance between intracellular cAMP and cGMP levels seemed to be involved in its mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–1136.

    PubMed  CAS  Google Scholar 

  2. American Heart Association. American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 7.5. Postresuscitation support. Circulation. 2005;112:IV84–IV88.

    Google Scholar 

  3. Sarkar D, Vallance P, Amirmansour C, Harding SE. Positive inotropic effects of NO donors in isolated guinea-pig and human cardiomyocytes independent of NO species and cyclic nucleotides. Cardiovasc Res. 2000;48:430–439.

    Article  PubMed  CAS  Google Scholar 

  4. Kojda G, Kottenberg K, Nix P, Schluter KD, Piper HM, Noack E. Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. Circ Res. 1996;78:91–101.

    PubMed  CAS  Google Scholar 

  5. Kelly RA, Balligand JL, Smith TW. Nitric oxide and cardiac function. Circ Res. 1996;79:363–380.

    PubMed  CAS  Google Scholar 

  6. Okada H, Kurita T, Mochizuki T, Morita K, Sato S. The cardio-protective effect of dexmedetomidine on global ischaemia in isolated rat hearts. Resuscitation. 2007;74:538–545.

    Article  PubMed  CAS  Google Scholar 

  7. Vila-Petroff MG, Younes A, Egan J, Lakatta EG, Sollott SJ. Activation of distinct camp-dependent and cGMP-dependent pathways by nitric oxide in cardiac myocytes. Circ Res. 1999;84:1020–1031.

    PubMed  CAS  Google Scholar 

  8. Moalem J, Weiss HR, Davidov T, Rodriguez R, Molino B, Lazar MJ, Scholz PM. Heart failure reduces both the effects and interaction between cyclic GMP and cyclic AMP. J Surg Res. 2006;134:300–306.

    Article  PubMed  CAS  Google Scholar 

  9. Kojda G, Kottenberg K. Regulation of basal myocardial function by NO. Cardiovasc Res. 1999;41:514–523.

    Article  PubMed  CAS  Google Scholar 

  10. Paulus WJ, Frantz S, Kelly RA. Nitric oxide and cardiac contractility in human heart failure: time for reappraisal. Circulation. 2001;104:2260–2262.

    PubMed  CAS  Google Scholar 

  11. Layland J, Solaro RJ, Shah AM. Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc Res. 2005;66:12–21.

    Article  PubMed  CAS  Google Scholar 

  12. Rastaldo R, Pagliaro P, Cappello S, Penna C, Mancardi D, Westerhof N, Losano G. Nitric oxide and cardiac function. Life Sci. 2007;81:779–793.

    Article  PubMed  CAS  Google Scholar 

  13. Brown GC, Borutaite V. Nitric oxide and mitochondrial respiration in the heart. Cardiovasc Res. 2007;75:283–290.

    Article  PubMed  CAS  Google Scholar 

  14. Bryan NS, Rassaf T, Maloney RE, Rodriguez CM, Saijo F, Rodriguez JR, Feelisch M. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc Natl Acad Sci U S A. 2004;101:4308–4313.

    Article  PubMed  CAS  Google Scholar 

  15. Hearse DJ, Bolli R. Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res. 1992;26:101–108.

    Article  PubMed  CAS  Google Scholar 

  16. Piper HM, Garcia-Dorado D, Ovize M. A fresh look at reperfusion injury. Cardiovasc Res. 1998;38:291–300.

    Article  PubMed  CAS  Google Scholar 

  17. Maxwell SR, Lip GY. Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol. 1997;58:95–117.

    Article  PubMed  CAS  Google Scholar 

  18. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R. Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res. 2000;87:241–247.

    PubMed  CAS  Google Scholar 

  19. Amrani M, Chester AH, Jayakumar J, Schyns CJ, Yacoub MH. L-Arginine reverses low coronary reflow and enhances postischaemic recovery of cardiac mechanical function. Cardiovasc Res. 1995;30:200–204.

    PubMed  CAS  Google Scholar 

  20. Hiramatsu T, Forbess JM, Miura T, Mayer JE Jr. Effects of L-arginine and L-nitro-arginine methyl ester on recovery of neonatal lamb hearts after cold ischemia. Evidence for an important role of endothelial production of nitric oxide. J Thorac Cardiovasc Surg. 1995;109:81–86; discussion 87.

    Article  PubMed  CAS  Google Scholar 

  21. Pabla R, Buda AJ, Flynn DM, Salzberg DB, Lefer DJ. Intracoronary nitric oxide improves postischemic coronary blood flow and myocardial contractile function. Am J Physiol. 1995;269:H1113–H1121.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Hui, Y., Mochizuki, T., Kondo, K. et al. Nitric oxide donor, NOC7, reveals biphasic effect on contractile force of isolated rat heart after global ischemia. J Anesth 22, 229–235 (2008). https://doi.org/10.1007/s00540-008-0625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00540-008-0625-3

Key words

Navigation