Skip to main content
Log in

Cryptogenic cholestasis in young and adults: ATP8B1, ABCB11, ABCB4, and TJP2 gene variants analysis by high-throughput sequencing

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Mutations in ATP-transporters ATPB81, ABCB11, and ABCB4 are responsible for progressive familial intrahepatic cholestasis (PFIC) 1, 2 and 3, and recently the gene for tight junction protein-2 (TJP2) has been linked to PFIC4.

Aim

As these four genes have been poorly studied in young people and adults, we investigated them in this context here.

Methods

In patients with cryptogenic cholestasis, we analyzed the presence of mutations by high-throughput sequencing. Bioinformatics analyses were performed for mechanistic and functional predictions of their consequences on biomolecular interaction interfaces.

Results

Of 108 patients, 48 whose cause of cholestasis was not established were submitted to molecular analysis. Pathogenic/likely pathogenic mutations were found in ten (21%) probands for 13 mutations: two in ATP8B 1, six in ABCB11, two in ABCB4, three in TJP2. We also identified seven variants of uncertain significance: two in ATP8B1, one in ABCB11, two in ABCB4 and two in TJP2. Finally, we identified 11 benign/likely benign variants. Patients with pathogenic/likely pathogenic mutations had higher levels of liver stiffness (measured by FibroScan®) and bile acids, as well as higher rates of cholestatic histological features, compared to the patients without at least likely pathogenic mutations. The multivariate analysis showed that itching was the only independent factor associated with disease-causing mutations (OR 5.801, 95% CI 1.244–27.060, p = 0.025).

Conclusions

Mutations in the genes responsible for PFIC may be involved in both young and adults with cryptogenic cholestasis in a considerable number of cases, including in heterozygous status. Diagnosis should always be suspected, particularly in the presence of itching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PFIC:

Progressive familial intrahepatic cholestasis

TJP2:

Tight junction protein-2

FIC1:

Familial intrahepatic cholestasis 1

BSEP:

Bile salt export pump

MDR:

Multidrug resistance P-glycoprotein 3

GGT:

Gamma-glutamyl-transpeptidase

AP:

Alkaline phosphatase

BRIC:

Benign intrahepatic cholestasis

LPAC:

Low-phospholipid-associated cholelithiasis

ICP:

Intrahepatic cholestasis of pregnancy

DIC:

Drug-induced cholestasis

HTS:

High-throughput sequencing

NGS:

Next-generation sequencing

PSC:

Primary sclerosing cholangitis

BA:

Bile acids

MAF:

Minor allele frequency

SIFT:

Sorting Intolerant From Tolerant

HGMD:

Human Gene Mutation Database

ACMG:

American College of Medical Genetics and Genomics

P:

Pathogenic

LP:

Likely pathogenic

VUS:

Variants of uncertain significance

LB:

Likely benign

B:

Benign

SD:

Standard deviation

CI:

Confidence interval

SNP:

Single-nucleotide polymorphism

ALT:

Alanine aminotransferase

OR:

Odds ratio

References

  1. Hori T, Nguyen JH, Uemoto S. Progressive familial intrahepatic cholestasis. Hepatobiliary Pancreat Dis Int. 2010;9:570–8.

    PubMed  CAS  Google Scholar 

  2. Paulusma CC, Elferink RP, Jansen PL. Progressive familial intrahepatic cholestasis type 1. Semin Liver Dis. 2010;30:117–24.

    Article  PubMed  CAS  Google Scholar 

  3. Lam P, Soroka CJ, Boyer JL. The bile salt export pump: clinical and experimental aspects of genetic and acquired cholestatic liver disease. Semin Liver Dis. 2010;30:125–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Smit JJ, Schinkel AH, Oude Elferink RP, et al. Homozygous disruption of the murine mdr2 P-glycoprotein gene leads to a complete absence of phospholipid from bile and to liver disease. Cell. 1993;75:451–62.

    Article  PubMed  CAS  Google Scholar 

  5. Davit-Spraul A, Gonzales E, Baussan C, et al. The spectrum of liver diseases related to ABCB4 gene mutations: pathophysiology and clinical aspects. Semin Liver Dis. 2010;30:134–46.

    Article  PubMed  CAS  Google Scholar 

  6. Sambrotta M, Strautnieks S, Papouli E, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pauli-Magnus C, Meier PJ, Stieger B. Genetic determinants of drug-induced cholestasis and intrahepatic cholestasis of pregnancy. Semin Liver Dis. 2010;30:147–59.

    Article  PubMed  CAS  Google Scholar 

  8. Poupon R, Rosmorduc O, Boëlle PY, et al. Genotype-phenotype relationships in the low-phospholipid-associated cholelithiasis syndrome: a study of 156 consecutive patients. Hepatology. 2013;58:1105–10.

    Article  PubMed  CAS  Google Scholar 

  9. Gordo-Gilart R, Hierro L, Andueza S, et al. Heterozygous ABCB4 mutations in children with cholestatic liver disease. Liver Int. 2016;36:258–67.

    Article  PubMed  CAS  Google Scholar 

  10. Colombo C, Vajro P, Degiorgio D, et al. SIGENP Study Group for Genetic Cholestasis. Clinical features and genotype-phenotype correlations in children with progressive familial intrahepatic cholestasis type 3 related to ABCB4 mutations. J Pediatr Gastroenterol Nutr. 2011;52:73–83.

    Article  PubMed  CAS  Google Scholar 

  11. Dröge C, Bonus M, Baumann U, et al. Sequencing of FIC1, BSEP and MDR3 in a large cohort of patients with cholestasis revealed a high number of different genetic variants. J Hepatol. 2017;S0168–8278:32147–55.

    Google Scholar 

  12. Xuan J, Yu Y, Qing T, et al. Next-generation sequencing in the clinic: promises and challenges. Cancer Lett. 2013;340:284–95.

    Article  PubMed  CAS  Google Scholar 

  13. Herbst SM, Schirmer S, Posovszky C, et al. Taking the next step forward—diagnosing inherited infantile cholestatic disorders with next generation sequencing. Mol Cell Probes. 2015;29:291–8.

    Article  PubMed  CAS  Google Scholar 

  14. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7:248–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Schwarz JM, Cooper DN, Schuelke M, et al. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

    Article  PubMed  CAS  Google Scholar 

  16. Richards S, Aziz N, Bale S, et al. ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Betts MJ, Lu Q, Jiang Y, et al. Mechismo: predicting the mechanistic impact of mutations and modifications on molecular interactions. Nucleic Acids Res. 2015;43:e10.

    Article  PubMed  CAS  Google Scholar 

  18. Pieper U, Webb BM, Dong GQ, et al. ModBase, a database of annotated comparative protein structure models and associated resources. Nucleic Acids Res. 2014;42(Database issue):D336–46.

    Article  PubMed  CAS  Google Scholar 

  19. Hornbeck PV, Chabra I, Kornhauser JM, et al. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics. 2004;4:1551–61.

    Article  PubMed  CAS  Google Scholar 

  20. Jay JJ, Brouwer C. Lollipops in the CLINIC: information dense mutation plots for precision medicine. PLoS ONE. 2016;11:e0160519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Painter JN, Savander M, Ropponen A, et al. Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy. Eur J Hum Genet. 2005;13:435–9.

    Article  PubMed  CAS  Google Scholar 

  22. Vitale G, Pirillo M, Mantovani V, et al. Bile salt export pump deficiency disease: two novel, late onset, ABCB11 mutations identified by next generation sequencing. Ann Hepatol. 2016;15:795–800.

    PubMed  CAS  Google Scholar 

  23. Anzivino C, Odoardi MR, Meschiari E, et al. ABCB4 and ABCB11 mutations in intrahepatic cholestasis of pregnancy in an Italian population. Dig Liver Dis. 2013;45:226–32.

    Article  PubMed  CAS  Google Scholar 

  24. Lang C, Meier Y, Stieger B, et al. Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug-induced liver injury. Pharmacogenet Genomics. 2007;17:47–60.

    Article  PubMed  CAS  Google Scholar 

  25. Jin MS, Oldham ML, Zhang Q, et al. Crystal structure of the multidrug transporter P-glycoprotein from Caenorhabditis elegans. Nature. 2012;490:566–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Degiorgio D, Colombo C, Seia M, et al. Molecular characterization and structural implications of 25 new ABCB4 mutations in progressive familial intrahepatic cholestasis type 3 (PFIC3). Eur J Hum Genet. 2007;15:1230–8.

    Article  PubMed  CAS  Google Scholar 

  27. Müllenbach R, Linton KJ, Wiltshire S, et al. ABCB4 gene sequence variation in women with intrahepatic cholestasis of pregnancy. J Med Genet. 2003;40:e70.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Liu C, Aronow BJ, Jegga AG, et al. Novel resequencing chip customized to diagnose mutations in patients with inherited syndromes of intrahepatic cholestasis. Gastroenterology. 2007;132:119–26.

    Article  PubMed  CAS  Google Scholar 

  29. Fanning AS, Anderson JM. Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann NY Acad Sci. 2009;1165:113–20.

    Article  PubMed  CAS  Google Scholar 

  30. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:D447–52.

    Article  PubMed  CAS  Google Scholar 

  31. van Mil SW, Houwen RH, Klomp LW. Genetics of familial intrahepatic cholestasis syndromes. J Med Genet. 2005;42:449–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Alissa FT, Jaffe R, Shneider BL. Update on progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. 2008;46:241–52.

    Article  PubMed  Google Scholar 

  33. Zhou S, Hertel PM, Finegold MJ, et al. Hepatocellular carcinoma associated with tight-junction protein 2 deficiency. Hepatology. 2015;62:1914–6.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Degiorgio D, Crosignani A, Colombo C, et al. ABCB4 mutations in adult patients with cholestatic liver disease: impact and phenotypic expression. J Gastroenterol. 2016;51:271–80.

    Article  PubMed  CAS  Google Scholar 

  35. Gotthardt D, Runz H, Keitel V, et al. A mutation in the canalicular phospholipid transporter gene, ABCB4, is associated with cholestasis, ductopenia, and cirrhosis in adults. Hepatology. 2008;48:1157–66.

    Article  PubMed  CAS  Google Scholar 

  36. Ziol M, Barbu V, Rosmorduc O, et al. ABCB4 heterozygous gene mutations associated with fibrosing cholestatic liver disease in adults. Gastroenterology. 2008;135:131–41.

    Article  PubMed  CAS  Google Scholar 

  37. Van Ooteghem NA, Klomp LW, Van Berge-Henegouwen GP, et al. Benign recurrent intrahepatic cholestasis progressing to progressive familial intrahepatic cholestasis: low GGT cholestasis is a clinical continuum. J Hepatol. 2002;36:439–43.

    Article  PubMed  Google Scholar 

  38. Padda MS, Sanchez M, Akhtar AJ, et al. Drug-induced cholestasis. Hepatology. 2011;53:1377–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Meier Y, Zodan T, Lang C, et al. Increased susceptibility for Intrahepatic cholestasis of pregnancy and contraceptive-induced cholestasis in carriers of the 1331T>C polymorphism in the bile salt export pump. World J Gastroenterol. 2008;14:38–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Pauli-Magnus C, Lang T, Meier Y, et al. Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p-glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy. Pharmacogenetics. 2004;14:91–102.

    Article  PubMed  CAS  Google Scholar 

  41. Dixon PH, van Mil SW, Chambers J, et al. Contribution of variant alleles of ABCB11 to susceptibility to intrahepatic cholestasis of pregnancy. Gut. 2009;58:537–44.

    Article  PubMed  CAS  Google Scholar 

  42. Ulzurrun E, Stephens C, Crespo E, et al. Role of chemical structures and the 1331T>C bile salt export pump polymorphism in idiosyncratic drug-induced liver injury. Liver Int. 2013;33:1378–85.

    Article  PubMed  CAS  Google Scholar 

  43. Gudbjartsson DF, Helgason H, Gudjonsson SA, et al. Large-scale whole-genome sequencing of the Icelandic population. Nat Genet. 2015;47:435–44.

    Article  PubMed  CAS  Google Scholar 

  44. Boldt K, van Reeuwijk J, Lu Q, et al. UK10K Rare Diseases Group. An organelle-specific protein landscape identifies novel diseases and molecular mechanisms. Nat Commun. 2016;7:11491. https://doi.org/10.1038/ncomms11491.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Raimondi F, Singh G, Betts MJ, et al. Insights into cancer severity from biomolecular interaction mechanisms. Sci Rep. 2016;6:34490. https://doi.org/10.1038/srep34490.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Wang NL, Lu YL, Zhang P, et al. Specially designed multi-gene panel facilitates genetic diagnosis in children with intrahepatic cholestasis: simultaneous test of known large insertions/deletions. PLoS ONE. 2016;11:e0164058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Togawa T, Sugiura T, Ito K, et al. Molecular genetic dissection and neonatal/infantile intrahepatic cholestasis using targeted next-generation sequencing. J Pediatr. 2016;171:171–4.

    Article  PubMed  Google Scholar 

  48. Gomez-Ospina N, Potter CJ, Xiao R, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun. 2016;18(7):10713.

    Article  CAS  Google Scholar 

  49. Qiu YL, Gong JY, Feng JY, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis. Hepatology. 2017;65:1655–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Gonzales E, Taylor SA, Davit-Spraul A, et al. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology. 2017;65:164–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GV and PA designed the study and collected data. AM, VM, and MS performed the DNA sequencing and applied prediction tools; AD supervised the histological evaluations, FR and RBR performed protein modeling by Mechismo; SG, AM, VM, GV, RV, and PA analyzed the patients’ data. GV wrote the manuscript; all authors critically revised the manuscript.

Corresponding author

Correspondence to Pietro Andreone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Financial support

No grants and other financial support were received.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitale, G., Gitto, S., Raimondi, F. et al. Cryptogenic cholestasis in young and adults: ATP8B1, ABCB11, ABCB4, and TJP2 gene variants analysis by high-throughput sequencing. J Gastroenterol 53, 945–958 (2018). https://doi.org/10.1007/s00535-017-1423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1423-1

Keywords

Navigation