Skip to main content

Advertisement

Log in

Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background and aims

The risk factors in the progression of nonalcoholic fatty liver disease (NAFLD) have not been fully clarified. Porphyromonas gingivalis (P.g) has been considered to be a confounding risk factor for systemic diseases. We aimed to evaluate the effect of P.g infection on risk of progression to NASH.

Methods

(1) Serum IgG antibody titers against P.g fimbriae (fimA) in 200 biopsy-proven NAFLD patients were measured by ELISA and compared with histological findings. (2) C57BL/6J mice were fed a control diet (CD) or high-fat diet (HFD) with or without P.g-odontogenic infection and analyzed histologically. Mouse livers were analyzed using CE–TOFMS and LC–TOFMS.

Results

(1) A significant correlation between fibrosis progression and antibody titers against P.g possessing fimA type 4 was identified (P = 0.0081). Multivariate analysis identified older age and type 4 P.g-positivity as risk factors for advanced fibrosis. (2) Fibrosis and steatosis were more severe in HFD P.g(+) mice compared with HFD P.g(−) mice. In metabolome analysis, fatty acid metabolism was significantly disrupted with HFD in P.g-infected mouse livers. Monounsaturated/saturated fatty acid ratios were significantly higher in the HFD P.g(+) group than in the HFD P.g(−) group (P < 0.05). Moreover, expression levels of SCD1 and ELOVL6 were significantly reduced.

Conclusions

These results suggest that P.g infection is an important risk factor for pathological progression in NAFLD. Increase in the monounsaturated/saturated fatty acid ratio may be an important change that facilitates progression of NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

P.g :

Porphyromonas gingivalis

ELISA:

Enzyme-linked immunosorbent assay

CE–TOFMS:

Capillary electrophoresis–time of flight mass spectrometry

LC–TOFMS:

Liquid chromatography–time of flight mass spectrometry

NASH:

Nonalcoholic steatohepatitis

LPS:

Lipolysaccharide

SCD:

Stearoyl-CoA desaturase

Elovl:

Elongation of very long chain fatty acids

References

  1. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–31.

    Article  CAS  PubMed  Google Scholar 

  2. Ludwig J, Viggiano TR, McGill DB, et al. Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc. 1980;55:434–8.

    CAS  PubMed  Google Scholar 

  3. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology. 2003;37:917–23.

    Article  PubMed  Google Scholar 

  4. Amarapurkar DN, Hashimoto E, Lesmana LA, et al. How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? J Gastroenterol Hepatol. 2007;22:788–93.

    Article  PubMed  Google Scholar 

  5. Hamaguchi M, Kojima T, Takeda N, et al. The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Ann Intern Med. 2005;143:722–8.

    Article  CAS  PubMed  Google Scholar 

  6. Kojima S, Watanabe N, Numata M, et al. Increase in the prevalence of fatty liver in Japan over the past 12 years: analysis of clinical background. J Gastroenterol. 2003;38:954–61.

    Article  PubMed  Google Scholar 

  7. Nakahara T, Hyogo H, Yoneda M, et al. Type 2 diabetes mellitus is associated with the fibrosis severity in patients with nonalcoholic fatty liver disease in a large retrospective cohort of Japanese patients. J Gastroenterol. 2014;49:1477–84.

    Article  CAS  PubMed  Google Scholar 

  8. Hamada S, Fujiwara T, Morishima S, et al. Molecular and immunological characterization of the fimbriae of Porphyromonas gingivalis. Microbiol Immunol. 1994;38:921–30.

    Article  CAS  PubMed  Google Scholar 

  9. Hamada S, Takada H, Ogawa T, et al. Lipopolysaccharides of oral anaerobes associated with chronic inflammation: chemical and immunomodulating properties. Int Rev Immunol. 1990;6:247–61.

    Article  CAS  PubMed  Google Scholar 

  10. Wilson M. Biological activities of lipopolysaccharides from oral bacteria and their relevance to the pathogenesis of chronic periodontitis. Sci Prog. 1995;78(Pt 1):19–34.

    CAS  PubMed  Google Scholar 

  11. Seymour GJ, Ford PJ, Cullinan MP, et al. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect. 2007;13(Suppl 4):3–10.

    Article  CAS  PubMed  Google Scholar 

  12. Pizzo G, Guiglia R, Lo Russo L, et al. Dentistry and internal medicine: from the focal infection theory to the periodontal medicine concept. Eur J Intern Med. 2010;21:496–502.

    Article  PubMed  Google Scholar 

  13. Wada K, Kamisaki Y. Roles of oral bacteria in cardiovascular diseases—from molecular mechanisms to clinical cases: involvement of Porphyromonas gingivalis in the development of human aortic aneurysm. J Pharmacol Sci. 2010;113:115–9.

    Article  CAS  PubMed  Google Scholar 

  14. Figuero E, Sanchez-Beltran M, Cuesta-Frechoso S, et al. Detection of periodontal bacteria in atheromatous plaque by nested polymerase chain reaction. J Periodontol. 2011;82:1469–77.

    Article  CAS  PubMed  Google Scholar 

  15. Iwamoto K, Kanno K, Hyogo H, et al. Advanced glycation end products enhance the proliferation and activation of hepatic stellate cells. J Gastroenterol. 2008;43:298–304.

    Article  CAS  PubMed  Google Scholar 

  16. Dickinson DP, Kubiniec MA, Yoshimura F, et al. Molecular cloning and sequencing of the gene encoding the fimbrial subunit protein of Bacteroides gingivalis. J Bacteriol. 1988;170:1658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tabeta K, Tanabe N, Yonezawa D, et al. Elevated antibody titers to Porphyromonas gingivalis as a possible predictor of ischemic vascular disease—results from the Tokamachi–Nakasato cohort study. J Atheroscler Thromb. 2011;18:808–17.

    Article  PubMed  Google Scholar 

  18. Yoneda M, Naka S, Nakano K, et al. Involvement of a periodontal pathogen, Porphyromonas gingivalis on the pathogenesis of non-alcoholic fatty liver disease. BMC Gastroenterol. 2012;12:16.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Furusho H, Miyauchi M, Hyogo H, et al. Dental infection of Porphyromonas gingivalis exacerbates high fat diet-induced steatohepatitis in mice. J Gastroenterol. 2013;48:1259–70.

    Article  CAS  PubMed  Google Scholar 

  20. Hyogo H, Tazuma S, Arihiro K, et al. Efficacy of atorvastatin for the treatment of nonalcoholic steatohepatitis with dyslipidemia. Metabolism. 2008;57:1711–8.

    Article  CAS  PubMed  Google Scholar 

  21. Ricci C, Longo R, Gioulis E, et al. Noninvasive in vivo quantitative assessment of fat content in human liver. J Hepatol. 1997;27:108–13.

    Article  CAS  PubMed  Google Scholar 

  22. Matteoni CA, Younossi ZM, Gramlich T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology. 1999;116:1413–9.

    Article  CAS  PubMed  Google Scholar 

  23. Brunt EM, Janney CG, Di Bisceglie AM, et al. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol. 1999;94:2467–74.

    Article  CAS  PubMed  Google Scholar 

  24. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.

    Article  PubMed  Google Scholar 

  25. Yoneda M, Fujii H, Sumida Y, et al. Platelet count for predicting fibrosis in nonalcoholic fatty liver disease. J Gastroenterol. 2011;46:1300–6.

    Article  PubMed  Google Scholar 

  26. Liou I, Kowdley KV. Natural history of nonalcoholic steatohepatitis. J Clin Gastroenterol. 2006;40(Suppl 1):S11–6.

    PubMed  Google Scholar 

  27. Abdelmalek MF, Diehl AM. Nonalcoholic fatty liver disease as a complication of insulin resistance. Med Clin N Am. 2007;91:1125–49.

    Article  CAS  PubMed  Google Scholar 

  28. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010;8:481–90.

    Article  CAS  PubMed  Google Scholar 

  29. Nakano K, Inaba H, Nomura R, et al. Distribution of Porphyromonas gingivalis fimA genotypes in cardiovascular specimens from Japanese patients. Oral Microbiol Immunol. 2008;23:170–2.

    Article  CAS  PubMed  Google Scholar 

  30. Amano A, Kuboniwa M, Nakagawa I, et al. Prevalence of specific genotypes of Porphyromonas gingivalis fimA and periodontal health status. J Dent Res. 2000;79:1664–8.

    Article  CAS  PubMed  Google Scholar 

  31. Arimatsu K, Yamada H, Miyazawa H, et al. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Sci Rep. 2014;4:4828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Firneisz G. Non-alcoholic fatty liver disease and type 2 diabetes mellitus: the liver disease of our age? World J Gastroenterol. 2014;20:9072–89.

    PubMed  PubMed Central  Google Scholar 

  33. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Basantani MK, Sitnick MT, Cai L, et al. Pnpla3/Adiponutrin deficiency in mice does not contribute to fatty liver disease or metabolic syndrome. J Lipid Res. 2011;52:318–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamada K, Mizukoshi E, Sunagozaka H, et al. Characteristics of hepatic fatty acid compositions in patients with nonalcoholic steatohepatitis. Liver Int. 2015;35:582–90.

    Article  CAS  PubMed  Google Scholar 

  36. Wang X, Cao Y, Fu Y, et al. Liver fatty acid composition in mice with or without nonalcoholic fatty liver disease. Lipids Health Dis. 2011;10:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–90.

    Article  CAS  PubMed  Google Scholar 

  38. Matsuzaka T, Atsumi A, Matsumori R, et al. Elovl6 promotes nonalcoholic steatohepatitis. Hepatology. 2012;56:2199–208.

    Article  CAS  PubMed  Google Scholar 

  39. Wang X, Ren Q, Wu T, et al. Ezetimibe prevents the development of nonalcoholic fatty liver disease induced by highfat diet in C57BL/6J mice. Mol Med Rep. 2014;10:2917–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fernandez Gianotti T, Burgueno A, Gonzales Mansilla N, et al. Fatty liver is associated with transcriptional downregulation of stearoyl-CoA desaturase and impaired protein dimerization. PLoS One. 2013;8:e76912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TN: study concept and design, data acquisition, data analysis and interpretation, generation of figures, preparation of manuscript. HH: data acquisition, study concept and design, literature search. AO: data acquisition. YN: data acquisition. TK: data acquisition. DM: data acquisition. MT: data acquisition. NH: data acquisition. CNH: preparation of manuscript. AH: data acquisition. MI: data acquisition. YK: data acquisition. HA: data acquisition. HO: data acquisition. HA-C: data acquisition. HF: data acquisition, literature search. TS: data acquisition. HK: data acquisition. MM: data acquisition. TT: study concept and design, data acquisition. KA: staining of human liver biopsy samples. KC: study concept and design, data acquisition, data analysis and interpretation.

Corresponding author

Correspondence to Kazuaki Chayama.

Ethics declarations

Financial support

This work was supported in part by a research grant of the Suzuken Memorial Foundation.

Conflict of interest

All authors have no conflict of interest related to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

535_2017_1368_MOESM1_ESM.pdf

Supplemental Figure 1 Metabolites in the principle metabolic pathways of HFD or HFD and P.-infected mouse liver (PDF 439 kb)

Supplementary material 2 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakahara, T., Hyogo, H., Ono, A. et al. Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease. J Gastroenterol 53, 269–280 (2018). https://doi.org/10.1007/s00535-017-1368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-017-1368-4

Keywords

Navigation