Skip to main content

Advertisement

Log in

Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long–Evans Tokushima fatty rats

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

It is widely understood that insulin resistance (IR) critically correlates with the development of liver fibrosis in several types of chronic liver injuries. Several experiments have proved that anti-IR treatment can alleviate liver fibrosis. Sodium–glucose cotransporter 2 (SGLT2) inhibitors comprise a new class of antidiabetic agents that inhibit glucose reabsorption in the renal proximal tubules, improving IR. The aim of this study was to elucidate the effect of an SGLT2 inhibitor on the development of liver fibrosis using obese diabetic Otsuka Long-Evans Tokushima fatty (OLETF) rats and their littermate nondiabetic Long–Evans Tokushima Otsuka (LETO) rats.

Methods

Male OLETF and LETO rats were intraperitoneally injected with porcine serum twice a week for 12 weeks to augment liver fibrogenesis. Different concentrations of ipragliflozin (3 and 6 mg/kg) were orally administered during the experimental period. Serological and histological data were examined at the end of the experimental period. The direct effect of ipragliflozin on the proliferation of a human hepatic stellate cell (HSC) line, LX-2, was also evaluated in vitro.

Results

OLETF rats, but not LETO rats, received 12 weeks of porcine serum injection to induce severe fibrosis. Treatment with ipragliflozin markedly attenuated the development of liver fibrosis and expression of hepatic fibrosis markers, such as alpha smooth muscle actin, collagen 1A1, and transforming growth factor beta (TGF-β), and improved IR in a dose-dependent manner in OLETF rats. In contrast, the proliferation of LX-2 in vitro was not affected, suggesting that ipragliflozin had no significant direct effect on the proliferation of HSCs.

Conclusion

In conclusion, our dataset suggests that an SGLT2 inhibitor could alleviate the development of liver fibrosis by improving IR in naturally diabetic rats. This may provide the basis for creating new therapeutic strategies for chronic liver injuries with IR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NASH:

Non-alcoholic steatohepatitis

IR:

Insulin resistance

SGLT2:

Sodium–glucose cotransporter 2

OLETF:

Otsuka Long–Evans Tokushima fatty

LETO:

Long–Evans Tokushima Otsuka

HSC:

Hepatic stellate cell

NAFLD:

Non-alcoholic fatty liver disease

DM:

Diabetes mellitus

PPARγ:

Peroxisome proliferator-activated receptor gamma

DPPIV:

Dipeptidyl peptidase IV

DPPIV-I:

Dipeptidyl peptidase IV inhibitor

CDAA:

Choline-deficient l-amino acid-defined

QUICKI:

Quantitative insulin sensitivity check index

SR:

Sirius red

TGF-β:

Transforming growth factor beta

αSMA:

Alpha smooth muscle actin

RT-PCR:

Real-time polymerase chain reaction

GAPDH:

Glyceraldehyde 3-phosphate dehydrogenase

Alb:

Albumin

T-Bil:

Total bilirubin

ALT:

Alanine aminotransferase

IRS:

Insulin receptor substrate

PI3K:

Phosphatidylinositol 3-kinase

TZD:

Thiazolidinediones

References

  1. Friedman SL. Liver fibrosis—from bench to bedside. J Hepatol. 2003;38(Suppl 1):S38–53.

    Article  PubMed  Google Scholar 

  2. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology. 2008;134(6):1655–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Iwaisako K, Taura K, Koyama Y, et al. Strategies to detect hepatic myofibroblasts in liver cirrhosis of different etiologies. Curr Pathobiol Rep. 2014;2(4):209–15.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346(16):1221–31.

    Article  CAS  PubMed  Google Scholar 

  5. Tolman KG, Fonseca V, Dalpiaz A, et al. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care. 2007;30(3):734–43.

    Article  CAS  PubMed  Google Scholar 

  6. Bugianesi E, McCullough AJ, Marchesini G. Insulin resistance: a metabolic pathway to chronic liver disease. Hepatology. 2005;42(5):987–1000.

    Article  CAS  PubMed  Google Scholar 

  7. Kahn CR. Insulin resistance, insulin insensitivity, and insulin unresponsiveness: a necessary distinction. Metabolism. 1978;27(12 Suppl 2):1893–902.

    Article  CAS  PubMed  Google Scholar 

  8. Gastaldelli A, Cusi K, Pettiti M, et al. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007;133(2):496–506.

    Article  CAS  PubMed  Google Scholar 

  9. Mason AL, Lau JY, Hoang N, et al. Association of diabetes mellitus and chronic hepatitis C virus infection. Hepatology. 1999;29(2):328–33.

    Article  CAS  PubMed  Google Scholar 

  10. Shintani Y, Fujie H, Miyoshi H, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126(3):840–8.

    Article  CAS  PubMed  Google Scholar 

  11. Allison ME, Wreghitt T, Palmer CR, et al. Evidence for a link between hepatitis C virus infection and diabetes mellitus in a cirrhotic population. J Hepatol. 1994;21(6):1135–9.

    Article  CAS  PubMed  Google Scholar 

  12. Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 2002;35(2):373–9.

    Article  CAS  PubMed  Google Scholar 

  13. Sugimoto R, Enjoji M, Kohjima M, et al. High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation ofmitogen-activated protein kinase. Liver Int. 2005;25(5):1018–26.

    Article  CAS  PubMed  Google Scholar 

  14. Svegliati-Baroni G, Ridolfi F, Di Sario A, et al. Insulin and insulin-like growth factor-1 stimulate proliferation and type I collagen accumulation by human hepatic stellate cells: differential effects on signal transduction pathways. Hepatology. 1999;29(6):1743–51.

    Article  CAS  PubMed  Google Scholar 

  15. Van Wagner LB, Rinella ME. The role of insulin-sensitizing agents in the treatment of nonalcoholic steatohepatitis. Therap Adv Gastroenterol. 2011;4(4):249–63.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Caldwell SH, Hespenheide EE, Redick JA, et al. A pilot study of a thiazolidinedione, troglitazone, in nonalcoholic steatohepatitis. Am J Gastroenterol. 2001;96(2):519–25.

    Article  CAS  PubMed  Google Scholar 

  17. Gerich JE. Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabet Med. 2010;27(2):136–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mather A, Pollock C. Glucose handling by the kidney. Kidney Int Suppl. 2011;120:S1–6.

    Article  CAS  Google Scholar 

  19. Mather A, Pollock C. Renal glucose transporters: novel targets for hyperglycemia management. Nat Rev Nephrol. 2010;6(5):307–11.

    Article  CAS  PubMed  Google Scholar 

  20. Kanai Y, Lee WS, You G, et al. The human kidney low affinity Na+/glucose cotransporter SGLT2. Delineation of the major renal reabsorptive mechanism for d-glucose. J Clin Invest. 1994;93(1):397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kurosaki E, Ogasawara H. Ipragliflozin and other sodium glucose cotransporter-2 (SGLT2) inhibitors in the treatment of type 2 diabetes: preclinical and clinical data. Pharmacol Ther. 2013;139(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  22. Kashiwagi A, Kazuta K, Goto K, et al. Ipragliflozin in combination with metformin for the treatment of Japanese patients with type 2 diabetes: ILLUMINATE, a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2015;17(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  23. Watanabe Y, Nakayama K, Taniuchi N, et al. Beneficial effects of canagliflozin in combination with pioglitazone on insulin sensitivity in rodent models of obese type 2 diabetes. PLoS One. 2015;10(1):e0116851.

  24. Vickers SP, Cheetham SC, Headland KR, et al. Combination of the sodium-glucose cotransporter-2 inhibitor empagliflozin with orlistat or sibutramine further improves the body-weight reduction and glucose homeostasis of obese rats fed a cafeteria diet. Diabetes Metab Syndr Obes. 2014;1(7):265–75.

    Article  Google Scholar 

  25. Takahara M, Shiraiwa T, Matsuoka TA, et al. Ameliorated pancreatic β cell dysfunction in type 2 diabetic patients treated with a sodium-glucose cotransporter 2 inhibitor ipragliflozin. Endocr J. 2015;62(1):77–86.

    Article  CAS  PubMed  Google Scholar 

  26. Hayashizaki-Someya Y, Kurosaki E, Takasu T, et al. Ipragliflozin, an SGLT2 inhibitor, exhibits a prophylactic effect on hepatic steatosis and fibrosis induced by choline-deficient l-amino acid-defined diet in rats. Eur J Pharmacol. 2015;5(754):19–24.

  27. Kodama Y, Kisseleva T, Iwaisako K, et al. c-Jun N-terminal kinase-1 from hematopoietic cells mediates progression from hepatic steatosis to steatohepatitis and fibrosis in mice. Gastroenterology. 2009;137(4):1467–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 2010;139(1):323–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sato T, Asahi Y, Toide K, et al. Insulin resistance in skeletal muscle of the male Otsuka Long-Evans Tokushima fatty rat, a new model of NIDDM. Diabetologia. 1995;38(9):1033–41.

    Article  CAS  PubMed  Google Scholar 

  30. Katz A, Nambi SS, Mather K, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85(7):2402–10.

    Article  CAS  PubMed  Google Scholar 

  31. Yoshiji H, Kuriyama S, Yoshii J, et al. Angiotensin-II type 1 receptor interaction is a major regulator for liver fibrosis development in rats. Hepatology. 2001;34(4 Pt 1):745–50.

    Article  CAS  PubMed  Google Scholar 

  32. Yoshiji H, Kuriyama S, Hicklin DJ, et al. KDR/Flk-1 is a major regulator of vascular endothelial growth factor-induced tumor development and angiogenesis in murine hepatocellular carcinoma cells. Hepatology. 1999;30(5):1179–86.

    Article  CAS  PubMed  Google Scholar 

  33. Kaji K, Yoshiji H, Ikenaka Y, et al. Dipeptidyl peptidase-4 inhibitor attenuates hepatic fibrosis via suppression of activated hepatic stellate cell in rats. J Gastroenterol. 2014;49:481–91.

    Article  CAS  PubMed  Google Scholar 

  34. Kaji K, Yoshiji H, Kitade M, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22(6):801–43.

    CAS  PubMed  Google Scholar 

  35. Spector SA, Olson ET, Gumbs AA, et al. Human insulin receptor and insulin signaling proteins in hepatic disease. J Surg Res. 1999;83(1):32–5.

    Article  CAS  PubMed  Google Scholar 

  36. Bhunchet E, Eishi Y, Wake K. Contribution of immune response to the hepatic fibrosis induced by porcine serum. Hepatology. 1996;4:811–7.

    Article  Google Scholar 

  37. Galli A, Ceni E, Crabb DW, et al. Antidiabetic thiazolidinediones inhibit invasiveness of pancreatic cancer cells via PPAR-gamma independent mechanisms. Gut. 2004;53(11):1688–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ota T, Takamura T, Kurita S, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 2007;132(1):282–93.

    Article  CAS  PubMed  Google Scholar 

  39. Peverill W, Powell LW, Skoien R. Evolving concepts in the pathogenesis of NASH: beyond steatosis and inflammation. Int J Mol Sci. 2014;15(5):8591–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Suzuki M, Takeda M, et al. Tofogliflozin, a sodium/glucose cotransporter 2 inhibitor, attenuates body weight gain and fat accumulation in diabetic and obese animal models. Nutr Diabetes. 2014;7(4):e125.

    Article  Google Scholar 

  41. Oliveira AG, Carvalho BM, Tobar N, et al. Physical exercise reduces circulating lipopolysaccharide and TLR4 activation and improves insulin signaling in tissues of DIO rats. Diabetes. 2011;60(3):784–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao X, Yan D, Zhao Y, et al. Moderate calorie restriction to achieve normal weight reverses β-cell dysfunction in diet-induced obese mice: involvement of autophagy. Nutr Metab (Lond). 2015;6(12):34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuteru Kitade.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nishimura, N., Kitade, M., Noguchi, R. et al. Ipragliflozin, a sodium–glucose cotransporter 2 inhibitor, ameliorates the development of liver fibrosis in diabetic Otsuka Long–Evans Tokushima fatty rats. J Gastroenterol 51, 1141–1149 (2016). https://doi.org/10.1007/s00535-016-1200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1200-6

Keywords

Navigation