Skip to main content

Advertisement

Log in

Fecal calprotectin: its scope and utility in the management of inflammatory bowel disease

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Gastrointestinal symptoms such as abdominal pain, dyspepsia, and diarrhea are relatively nonspecific and a common cause for seeking medical attention. To date, it is challenging for physicians to differentiate between functional and organic gastrointestinal conditions and it involves the use of serological and endoscopic techniques. Therefore, a simple, noninvasive, inexpensive, and effective test would be of utmost importance in clinical practice. Fecal calprotectin (FC) is considered to be a reliable biomarker that fulfills these criteria. FC can detect intestinal inflammation, and its level correlates well with macroscopic and histological inflammation as detected by colonoscopy and biopsies, respectively. FC has a decent diagnostic accuracy for differentiating organic diseases and functional disorders because of its excellent negative predictive value in ruling out inflammatory bowel disease (IBD) in symptomatic undiagnosed patients. There is accumulating evidence that FC has been effectively used to monitor the natural course of IBD, to predict relapse, and to see the response to treatment. This novel biomarker has the ability to assess mucosal healing (MH), which is a therapeutic goal in IBD management. A literature search was carried out using PubMed with the keywords FC, IBD, intestinal inflammation, and MH. In our review, we provide an overview of the utility and scope of FC as a biomarker in patients with IBD as well as undiagnosed patients with lower gastrointestinal symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12e1702.

  2. Chassaing B, Darfeuille-Michaud A. The commensal microbiota and enteropathogens in the pathogenesis of inflammatory bowel diseases. Gastroenterology. 2011;140(6):1720–28e1723.

  3. Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology. 2011;140(6):1729–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaser A, Blumberg RS. Autophagy, microbial sensing, endoplasmic reticulum stress, and epithelial function in inflammatory bowel disease. Gastroenterology. 2011;140(6):1738–47e1732.

  5. Lakatos PL. Recent trends in the epidemiology of inflammatory bowel diseases: up or down? World J Gastroenterol. 2006;12(38):6102–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Gismera CS, Aladren BS. Inflammatory bowel diseases: a disease (s) of modern times? Is incidence still increasing? World J Gastroenterol. 2008;14(36):5491–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Benchimol EI, Guttmann A, Griffiths AM, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58(11):1490–7.

    Article  CAS  PubMed  Google Scholar 

  8. Vermeire S, Van Assche G, Rutgeerts P. Laboratory markers in IBD: useful, magic, or unnecessary toys? Gut. 2006;55:426–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nielsen OH, Vainer B, Madsen SM, et al. Established and emerging biological activity markers of inflammatory bowel disease. Am J Gastroenterol. 2000;95:359–67.

    CAS  PubMed  Google Scholar 

  10. Bjerke K, Halstensen TS, Jahnsen F, et al. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer’s patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut. 1993;34:1357–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tibble JA, Bjarnason I. Non-invasive investigations of inflammatory bowel disease. World J Gastroenterol. 2001;7:460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fagerhol MK, Dale I, Anderson I. Release and quantification of leukocyte derived protein (L1). Scand J Haematol. 1980;24:393–8.

    Article  CAS  Google Scholar 

  13. Frosch M, Metze D, Foell D, et al. Early activation of cutaneous vessels and epithelial cells is characteristic of acute systemic onset juvenile idiopathic arthritis. Exp Dermatol. 2005;14:259–65.

    Article  PubMed  Google Scholar 

  14. Foell D, Frosch M, Sorg C, et al. Phagocyte-specific calcium binding S100 proteins as clinical laboratory markers of inflammation. Clin Chim Acta. 2004;344:37–51.

    Article  CAS  PubMed  Google Scholar 

  15. Poullis A, Foster R, Northfield TC, et al. Review article: faecal markers in the assessment of activity in inflammatory bowel disease. Aliment Pharmacol Ther. 2002;16:675–81.

    Article  CAS  PubMed  Google Scholar 

  16. Taghvaei T, Maleki I, Nagshvar F, et al. FC and ulcerative colitis endoscopic activity index as indicators of mucosal healing in ulcerative colitis. Intern Emerg Med. 2015;10:321–8.

    Article  PubMed  Google Scholar 

  17. Judd TA, Day AS, Lemberg DA, et al. Update of fecal markers of inflammation in inflammatory bowel disease. J Gastroenterol Hepatol. 2011;26:1493–9.

    Article  CAS  PubMed  Google Scholar 

  18. Voganatsi A, Panyutich A, Miyasaki KT, et al. Mechanism of extracellular release of human neutrophil calprotectin complex. J Leukoc Biol. 2001;70:130–4.

    CAS  PubMed  Google Scholar 

  19. Rammes A, Roth J, Goebeler M, et al. Myeloid-related protein (MRP) 8 and MRP14, calcium-binding proteins of the S100 family, are secreted by activated monocytes via a novel, tubulin-dependent pathway. J Biol Chem. 1997;272:9496–502.

    Article  CAS  PubMed  Google Scholar 

  20. Vermeire S, Van Assche G, Rutgeerts P. C-reactive protein as a marker for inflammatory bowel disease. Inflamm Bowel Dis. 2004;10:661–5.

    Article  PubMed  Google Scholar 

  21. Vermeire S, Van Assche G, Rutgeerts P. The role of C-reactive protein as an inflammatory marker in gastrointestinal diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:580–6.

    Article  CAS  PubMed  Google Scholar 

  22. Roseth AG, Schmidt PN, Fagerhol MK. Correlation between faecal excretion of indium-111-labelled granulocytes and calprotectin, a granulocyte marker protein, in patients with inflammatory bowel disease. Scand J Gastroenterol. 1999;34:50–4.

    Article  CAS  PubMed  Google Scholar 

  23. Tibble J, Teahon K, Thjodleifsson B, et al. A simple method for assessing intestinal inflammation in Crohn’s disease. Gut. 2000;47:506–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaya DR, Lyon TD, Duncan A, et al. Faecal calprotectin in the assessment of Crohn’s disease activity. Q J Med. 2005;98:435–41.

    Article  CAS  Google Scholar 

  25. Reinisch W, Panes J, Page K, et al. Discrepancy between fecal biomarkers and their intestinal gene expression in ulcerative colitis: results from an anti-il-13 antibody study. Gastroenterology. 2014;146(5):S-586.

    Google Scholar 

  26. Bjarnason I, Sherwood R. FC: a significant step in the noninvasive assessment of intestinal inflammation. J Pediatr Gastrenterol Nutr. 2001;33:11–3.

    Article  CAS  Google Scholar 

  27. Bunn SK, Bisset WM, Main MJ, et al. FC: validation as a noninvasive measure of bowel inflammation in childhood inflammatory bowel disease. J Pediatr Gastrenterol Nutr. 2001;33:14–22.

    Article  CAS  Google Scholar 

  28. Summerton CB, Longlands MG, Wiener K, et al. Faecal calprotectin: a marker of inflammation throughout the intestinal tract. Eur J Gastroenterol Hepatol. 2002;14:841–5.

    Article  CAS  PubMed  Google Scholar 

  29. Roseth AG, Fagerhol MK, Aadland E, et al. Assessment of the neutrophil dominating protein calprotectin in feces. A methodologic study. Scand J Gastroenterol. 1992;27:793–8.

    Article  CAS  PubMed  Google Scholar 

  30. Fagerberg UL, Loof L, Merzoug RD, et al. FC levels in healthy children studied with an improved assay. J Pediatr Gastrenterol Nutr. 2003;37:468–72.

    Article  CAS  Google Scholar 

  31. Abildtrup M, Kingsley GH, Scott DL. Calprotectin as a biomarker for rheumatoid arthritis: a systematic review. J Rheumatol. 2015;42:760–70.

    Article  CAS  PubMed  Google Scholar 

  32. Meuwis MA, Vernier-Massouille G, Grimaud JC, et al. Serum calprotectin as a biomarker for Crohn’s disease. J Crohns Colitis. 2013;7:e678–83.

    Article  PubMed  Google Scholar 

  33. Dhaliwal A, Zeino Z, Tomkins C, et al. Utility of faecal calprotectin in inflammatory bowel disease (IBD): what cut-offs should we apply? Frontline Gastroenterol. 2015;6(1):14–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lasson A, Stotzer PO, Ohman L, et al. The intraindividual variability of faecal calprotectin: a prospective study in patients with active ulcerative colitis. J Crohns Colitis. 2015;9(1):26–32.

    PubMed  Google Scholar 

  35. Sherwood RA. Faecal markers of gastrointestinal inflammation. J Clin Pathol. 2012;65:981–5.

    Article  PubMed  Google Scholar 

  36. Labaere D, Smismans A, Olmen AV, et al. Comparison of six different calprotectin assays for the assessment of inflammatory bowel disease. United Eur Gastroenterol J. 2014;2(1):30–7.

    Article  Google Scholar 

  37. Inoue K, Aomatsu T, Yoden A, et al. Usefulness of a novel and rapid assay system for FC in pediatric patients with inflammatory bowel diseases. J Gastroenterol Hepatol. 2014;29:1406–12.

    Article  CAS  PubMed  Google Scholar 

  38. Angriman I, Scarpa M, D’Inca R, et al. Enzymes in feces: useful markers of chronic inflammatory bowel disease. Clin Chim Acta. 2007;381:63–8.

    Article  CAS  PubMed  Google Scholar 

  39. Shastri Y, Povse N, Stein J. Prospective comparative study for new rapid bedside FC test with an established ELISA to assess intestinal inflammation. Clin Lab. 2009;55:53–5.

    CAS  PubMed  Google Scholar 

  40. Coorevits L, Baert FJ, Vanpoucke HJ. Faecal calprotectin: comparative study of the Quantum Blue rapid test and an established ELISA method. Clin Chem Lab Med. 2013;51(4):825–31.

    Article  CAS  PubMed  Google Scholar 

  41. Verstergaard TA, Nielsen SL, Dahlerup JF, et al. FC: assessment of a rapid test. Scand J Clin Lab Invest. 2008;68:343–7.

    Article  CAS  Google Scholar 

  42. Otten CM, Kok L, Witteman BJ, et al. Diagnostic performance of rapid tests for detection of FC and lactoferrin and their ability to discriminate inflammatory from irritable bowel syndrome. Clin Chem Lab Med. 2008;46:1275–80.

    Article  CAS  PubMed  Google Scholar 

  43. Damms A, Bischoff SC. Validation and clinical significance of a new calprotectin rapid test for the diagnosis of gastrointestinal diseases. Int J Colorectal Dis. 2008;23:985–92.

    Article  CAS  PubMed  Google Scholar 

  44. Lobatón T, Rodríguez-Moranta F, Lopez A, et al. A new rapid quantitative test for FC predicts endoscopic activity in ulcerative colitis. Inflamm Bowel Dis. 2013;19(5):1034–42.

    Article  PubMed  Google Scholar 

  45. Lehmann FS, Burri E, Beglinger C. The role and utility of faecal markers in inflammatory bowel disease. Ther Adv Gastroenterol. 2015;8(1):23–36.

    Article  CAS  Google Scholar 

  46. Smith LA, Gaya DR. Utility of faecal calprotectin analysis in adult inflammatory bowel disease. World J Gastroenterol. 2012;18(46):6782–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gisbert JP, McNicholl AG. Questions and answers on the role of faecal calprotectin as a biological marker in inflammatory bowel disease. Dig Liver Dis. 2009;41:56–66.

    Article  CAS  PubMed  Google Scholar 

  48. Kapel N, Campeotto F, Kalach N, et al. Faecal calprotectin in term and preterm neonates. J Pediatr Gastrenterol Nutr. 2010;51(5):542–7.

    Article  CAS  Google Scholar 

  49. Von Roon AC, Karamountzos L, Purkayastha S, et al. Diagnostic precision of FC for inflammatory bowel disease and colorectal malignancy. Am J Gastroenterol. 2007;102:803–13.

    Article  CAS  Google Scholar 

  50. Mosli MH, Zou G, Garg SK, et al. C-reactive protein, FC, and stool lactoferrin for detection of endoscopic activity in symptomatic inflammatory bowel disease patients: a systematic review and meta-analysis. Am J Gastroenterol. 2015;110:802–19.

    Article  PubMed  Google Scholar 

  51. Lin JF, Chen JM, Zuo JH, et al. Meta-analysis: FC for assessment of inflammatory bowel disease activity. Inflamm Bowel Dis. 2014;20:1407–15.

    Article  PubMed  Google Scholar 

  52. Nancey S, Boschetti G, Moussata D, et al. Neopterin is a novel reliable fecal marker as accurate as calprotectin for predicting endoscopic disease activity in patients with inflammatory bowel diseases. Inflamm Bowel Dis. 2013;19:1043–52.

    Article  PubMed  Google Scholar 

  53. Tibble JA, Sigthorsson G, Bridger S, et al. Surrogate markers of intestinal inflammation are predictive of relapse in patients with inflammatory bowel disease. Gastroenterology. 2000;119:15–22.

    Article  CAS  PubMed  Google Scholar 

  54. Husebye E, Ton H, Johne B. Biological variability of FC in patients referred for colonoscopy without colonic inflammation or neoplasm. Am J Gastroenterol. 2001;96:2683–7.

    CAS  PubMed  Google Scholar 

  55. Poullis A, Foster R, Shetty A, et al. Bowel inflammation as measured by FC: a link between lifestyle factors and colorectal cancer risk. Cancer Epidemiol Biomark Prev. 2004;13:279–84.

    Article  CAS  Google Scholar 

  56. Dobrzanski C, Pedersen N, Hansen VV, et al. P483. Faecal calprotectin exhibits diurnal variation in inflammatory bowel disease patients but is not affected by time of day. J Crohns Colitis. 2014;S268.

  57. Gibbs J, Ince L, Matthews L, et al. An epithelial circadian clock controls pulmonary inflammation and glucocorticoid action. Nat Med. 2014;20(8):919–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Foster R, Bjarnason I, Roseth AG, et al. Alcohol misuse causes a reversible inflammatory enteropathy with increased intestinal permeability. Alcohol. 1995;30:C5.2.

    Google Scholar 

  59. Tibble JA, Sigthorsson G, Foster R, et al. High prevalence of NSAID enteropathy as shown by a simple faecal test. Gut. 1999;45:362–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Poullis A, Foster R, Mendall MA. Proton pump inhibitors are associated with elevation of faecal calprotectin and may affect specificity. Eur J Gastroenterol Hepatol. 2003;15:573–4.

    Article  PubMed  Google Scholar 

  61. Meucci G, D’Inca R, Maieron R, et al. Diagnostic value of faecal calprotectin in unselected outpatients referred for colonoscopy: a multicenter prospective study. Dig Liver Dis. 2010;42(3):191–5.

    Article  PubMed  Google Scholar 

  62. Tibble JA, Sigthorsson G, Foster R, et al. Use of surrogate markers of inflammation and Rome criteria to distinguish organic from nonorganic intestinal disease. Gastroenterology. 2002;123(2):450–60.

    Article  PubMed  Google Scholar 

  63. Roseth AG. Determination of faecal calprotectin, a novel marker of organic gastrointestinal disorders. Dig Liver Dis. 2003;35:607–9.

    Article  CAS  PubMed  Google Scholar 

  64. Konikoff MR, Denson LA. Role of FC as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:524–34.

    Article  PubMed  Google Scholar 

  65. Van Rheenen P, Van de Vijver E, Fiddler V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ. 2010;341:c3369.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Chang MH, Chou JW, Chen SM, et al. Faecal calprotectin as a novel biomarker for differentiating between inflammatory bowel disease and irritable bowel syndrome. Mol Med Rep. 2014;10(1):522–6.

    CAS  PubMed  Google Scholar 

  67. Henderson P, Anderson N, Wilson D. The diagnostic accuracy of FC during the investigation of suspected pediatric inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroenterol. 2014;109:637–45.

    Article  CAS  PubMed  Google Scholar 

  68. Vatn MH. Natural history and complications of IBD. Curr Gastroenterol Rep. 2009;11(6):481–7.

    Article  PubMed  Google Scholar 

  69. Langhorst J, Elsenbruch S, Koelzer J, et al. Noninvasive markers in the assessment of intestinal inflammation in inflammatory bowel diseases: performance of fecal lactoferrin, calprotectin, and PMN-elastase, CRP, and clinical indices. Am J Gastroenterol. 2008;103(1):162–9.

    Article  PubMed  Google Scholar 

  70. Best WR, Becktel JM, Singleton JW, et al. Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology. 1976;70(3):439–44.

    CAS  PubMed  Google Scholar 

  71. Harvey RF, Bradshaw JM. A simple index of Crohn’s-disease activity. Lancet. 1980;1(8167):514.

    Article  CAS  PubMed  Google Scholar 

  72. Denis MA, Reenaers C, Fontaine F, et al. Assessment of endoscopic activity index and biological inflammatory markers in clinically active Crohn’s disease with normal C-reactive protein serum level. Inflamm Bowel Dis. 2007;13(9):1100–5.

    Article  PubMed  Google Scholar 

  73. Xiang JY, Ouyang Q, Li GD, et al. Clinical value of FC in determining disease activity of ulcerative colitis. World J Gastroenterol. 2008;14(1):53–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Jones J, Loftus EV Jr, Panaccione R, et al. Relationships between disease activity and serum and fecal biomarkers in patients with Crohn’s disease. Clin Gastroenterol Hepatol. 2008;6(11):1218–24.

    Article  PubMed  Google Scholar 

  75. Schoepfer AM, Beglinger C, Straumann A, et al. FC correlates more closely with the Simple Endoscopic Score for Crohn’s disease (SES-CD) than CRP, blood leukocytes, and the CDAI. Am J Gastroenterol. 2010;105(1):162–9.

    Article  CAS  PubMed  Google Scholar 

  76. Ricanek P, Brackmann S, Perminow G, et al.; IBSEN II Study Group. Evaluation of disease activity in IBD at the time of diagnosis by the use of clinical, biochemical and fecal biomarkers. Scand J Gastroenterol. 2011;46(9):1081–91.

  77. Stange EF, Travis SP, Vermeire S, et al.; European Crohn’s and Colitis Organisation (ECCO). European evidence-based Consensus on the diagnosis and management of ulcerative colitis: definitions and diagnosis. J Crohns Colitis. 2008;2(1):1–23.

  78. Van Assche G, Dignass A, Panes J, et al.; European Crohn’s and Colitis Organisation (ECCO). The second European evidence-based Consensus on the diagnosis and management of Crohn’s disease: definitions and diagnosis. J Crohns Colitis. 2010;4(1):7–27.

  79. Bunn SK, Bisset W, Main M, et al. FC as a measure of disease activity in childhood inflammatory bowel disease. J Pediatr Gastrenterol Nutr. 2001;32:171–7.

    Article  CAS  Google Scholar 

  80. Canani R, Terrin G, Rapacciuolo L, et al. Faecal calprotectin as reliable non-invasive marker to assess the severity of mucosal inflammation in children with inflammatory bowel disease. Dig Liver Dis. 2008;40:547–53.

    Article  PubMed  Google Scholar 

  81. Fagerberg U, Loof L, Myrdal U, et al. Colorectal inflammation is well predicted by FC in children with gastrointestinal symptoms. J Pediatr Gastrenterol Nutr. 2005;40:450–5.

    Article  Google Scholar 

  82. Limburg PJ, Ahlquist DA, Sandborn WJ, et al. FC levels predict colorectal inflammation among patients with chronic diarrhea referred for colonoscopy. Am J Gastroenterol. 2000;95:2831–7.

    Article  CAS  PubMed  Google Scholar 

  83. Costa F, Mumolo MG, Bellini M, et al. Role of faecal calprotectin as non-invasive marker of intestinal inflammation. Dig Liver Dis. 2003;35:642–7.

    Article  CAS  PubMed  Google Scholar 

  84. D’Inca R, Dal Pont E, Di Leo V, et al. Calprotectin and lactoferrin in the assessment of intestinal inflammation and organic disease. Int J Colorectal Dis. 2007;22:429–37.

    Article  PubMed  Google Scholar 

  85. Sipponen T, Kolho KL. Faecal calprotectin in children with clinically quiescent inflammatory bowel disease. Scand J Gastroenterol. 2010;45(7–8):872–7.

    Article  CAS  PubMed  Google Scholar 

  86. Tibble JA, Bjarnason I. FC as an index of intestinal inflammation. Drugs Today (Barc). 2001;37:85–96.

    Article  CAS  Google Scholar 

  87. Pardi DS, Sandborn WJ. Predicting relapse in patients with inflammatory bowel disease: what is the role of biomarkers? Gut. 2005;54:321–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mao R, Xiao Y, Gao X, et al. FC in predicting relapse of inflammatory bowel diseases: a meta-analysis of prospective studies. Inflamm Bowel Dis. 2012;18:1894–9.

    Article  PubMed  Google Scholar 

  89. Walkiewicz D, Werlin S, Fish D, et al. FC is useful in predicting disease relapse in pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2008;14:669–73.

    Article  PubMed  Google Scholar 

  90. Mooiweer E, Severs M, Schipper ME, et al. Low FC predicts sustained clinical remission in inflammatory bowel disease patients: a plea for deep remission. J Crohns Colitis. 2015;9(1):50–5.

    Article  PubMed  Google Scholar 

  91. Louis E, Mary J, Vernier-Massouille G, et al. Groupe D’etudes Thérapeutiques Des Affections Inflammatoires Digestives. Maintenance of remission among patients with Crohn’s disease on antimetabolite therapy after infliximab therapy is stopped. Gastroenterology. 2012;142:63–70.

    Article  CAS  PubMed  Google Scholar 

  92. Gisbert JP, Bermejo F, Perez-Calle JL, et al. FC and lactoferrin for the prediction of inflammatory bowel disease relapse. Inflamm Bowel Dis. 2009;15:1190–8.

    Article  PubMed  Google Scholar 

  93. Molander P, Färkkilä M, Ristimäki A, et al. Does FC predict short-term relapse after stopping TNFα-blocking agents in inflammatory bowel disease patients in deep remission? J Crohns Colitis. 2015;9(1):33–40.

    PubMed  Google Scholar 

  94. Ferreiro-Iglesias R, Barreiro-de Acosta M, Otero Santiago M, et al. FC as predictor of relapse in patients with inflammatory bowel disease under maintenance infliximab therapy. J Clin Gastroenterol. 2016;50(2):147–51.

    Article  CAS  PubMed  Google Scholar 

  95. Costa F, Mumolo MG, Ceccarelli L, et al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn’s disease. Gut. 2005;54(3):364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. D’Inca R, Dal Pont E, Di Leo V, et al. Can calprotectin predict relapse risk in inflammatory bowel disease? Am J Gastroenterol. 2008;103:2007–14.

    Article  PubMed  CAS  Google Scholar 

  97. Garcia-Sanchez V, Iglesias-Flores E, Gonzalez R, et al. Does FC predict relapse in patients with Crohn’s disease and ulcerative colitis? J Crohns Colitis. 2010;4:144–52.

    Article  PubMed  Google Scholar 

  98. De Vos M, Louis EJ, Jahnsen J, et al. Consecutive FC measurements to predict relapse in patients with ulcerative colitis receiving infliximab maintenance therapy. Inflamm Bowel Dis. 2013;19:2111–7.

    Article  PubMed  Google Scholar 

  99. Roseth AG, Aadland E, Grzyb K. Normalization of faecal calprotectin: a predictor of mucosal healing in patients with inflammatory bowel disease. Scand J Gastroenterol. 2004;39:1017–20.

    Article  CAS  PubMed  Google Scholar 

  100. Molander P, Af Bjorkesten C, Mustonen H, et al. FC concentration predicts outcome in inflammatory bowel disease after induction therapy with TNFα blocking agents. Inflamm Bowel Dis. 2012;18:2011–7.

    Article  PubMed  Google Scholar 

  101. Wagner M, Peterson CG, Ridefelt P, et al. Fecal markers of inflammation used as surrogate markers for treatment outcome in relapsing inflammatory bowel disease. World J Gastroenterol. 2008;14(36):5584–9.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sipponen T, Savilahti E, Karkkainen P, et al. FC, lactoferrin, and endoscopic disease activity in monitoring anti-TNF-alpha therapy for Crohn’s disease. Inflamm Bowel Dis. 2008;14(10):1392–8.

    Article  PubMed  Google Scholar 

  103. Ho GT, Lee HM, Brydon G, et al. FC predicts the clinical course of acute severe ulcerative colitis. Am J Gastroenterol. 2009;104(3):673–8.

    Article  CAS  PubMed  Google Scholar 

  104. Kolho KL, Raivio T, Lindahl H, et al. FC remains high during glucocorticoid therapy in children with inflammatory bowel disease. Scand J Gastroenterol. 2006;41:720–5.

    Article  CAS  PubMed  Google Scholar 

  105. Kolho K, Sipponen T. The long-term outcome of anti-tumor necrosis factor-α therapy related to FC values during induction therapy in pediatric inflammatory bowel disease. Scand J Gastroenterol. 2014;49:434–41.

    Article  CAS  PubMed  Google Scholar 

  106. Pineton de Chambrun G, Peyrin-Biroulet L, Lemann M, et al. Clinical implications of mucosal healing for the management of IBD. Nat Rev Gastroenterol Hepatol. 2010;7:15–29.

    Article  PubMed  Google Scholar 

  107. Mazzuolia S, Guglielmi FW, Antonellib E, et al. Definition and evaluation of mucosal healing in clinical practice. Dig Liver Dis. 2013;45:969–77.

    Article  Google Scholar 

  108. Peyrin-Biroulet L, Ferrante M, Magro F, et al.; Scientific Committee of the European Crohn’s and Colitis Organization. Results from the 2nd Scientific Workshop of the ECCO. I: Impact of mucosal healing on the course of inflammatory bowel disease. J Crohns Colitis. 2011;5:477–483.

  109. D’Haens G, Ferrante M, Vermeire S, et al. FC is a surrogate marker for endoscopic lesions in inflammatory bowel disease. Inflamm Bowel Dis. 2012;18:2218–24.

    Article  PubMed  Google Scholar 

  110. Williams JG, Wong WD, Rothenberger DA, et al. Recurrence of Crohn’s disease after resection. Br J Surg. 1991;78:10–9.

    Article  CAS  PubMed  Google Scholar 

  111. Boschetti G, Laidet M, Moussata D, et al. Levels of FC are associated with the severity of postoperative endoscopic recurrence in asymptomatic patients with Crohn’s disease. Am J Gastroenterol. 2015;110:865–72.

    Article  CAS  PubMed  Google Scholar 

  112. Orlando A, Modesto I, Castiglione F, et al. The role of calprotectin in predicting endoscopic post-surgical recurrence in asymptomatic Crohn’s disease: a comparison with ultrasound. Eur Rev Med Pharmacol Sci. 2006;10:17–22.

    CAS  PubMed  Google Scholar 

  113. Scarpa M, D’Inca R, Basso D, et al. Fecal lactoferrin and calprotectin after ileocolonic resection for Crohn’s disease. Dis Colon Rectum. 2007;50:861–9.

    Article  PubMed  Google Scholar 

  114. Papay P, Ignjatovic A, Karmiris K, et al. Optimising monitoring in the management of Crohn’s disease: a physician’s perspective. J Crohns Colitis. 2013;7:653–69.

    Article  PubMed  Google Scholar 

  115. Shen B, Fazio VW, Remzi FH, et al. Clinical approach to diseases of ileal pouch-anal anastomosis. Am J Gastroenterol. 2005;100:2796–807.

    Article  PubMed  Google Scholar 

  116. Sandborn WJ. Pouchitis following ileal pouch-anal anastomosis: definition, pathogenesis, and treatment. Gastroenterology. 1994;107:1856–60.

    CAS  PubMed  Google Scholar 

  117. Lohmuller JL, Pemberton JH, Dozois RR, et al. Pouchitis and extraintestinal manifestations of inflammatory bowel disease after ileal pouch-anal anastomosis. Ann Surg. 1990;211:622–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Stavlo PL, Libsch KD, Rodeberg DA, et al. Pediatric ileal pouch-anal anastomosis: functional outcomes and quality of life. J Pediatr Surg. 2003;38:935–9.

    Article  PubMed  Google Scholar 

  119. Shepherd NA, Jass JR, Duval I, et al. Restorative proctocolectomy with ileal reservoir: pathological and histochemical study of mucosal biopsy specimens. J Clin Pathol. 1987;40:601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Thomas P, Rihani H, Roseth A, et al. Assessment of ileal pouch inflammation by single-stool calprotectin assay. Dis Colon Rectum. 2000;43:214–20.

    Article  CAS  PubMed  Google Scholar 

  121. Johnson MW, Maestranzi S, Duffy AM, et al. FC: a noninvasive diagnostic tool and marker of severity in pouchitis. Eur J Gastroenterol Hepatol. 2008;20:174–9.

    Article  PubMed  Google Scholar 

  122. Yamamoto T, Shimoyama T, Bamba T, et al. Consecutive monitoring of FC and lactoferrin for the early diagnosis and prediction of pouchitis after restorative proctocolectomy for ulcerative colitis. Am J Gastroenterol. 2015;110:881–7.

    Article  CAS  PubMed  Google Scholar 

  123. Pakarinen MP, Koivusalo A, Natunen J, et al. FC mirrors inflammation of the distal ileum and bowel function after restorative proctocolectomy for pediatric onset ulcerative colitis. Inflamm Bowel Dis. 2010;16(3):482–6.

    Article  PubMed  Google Scholar 

  124. Lehmann F, Trapani F, Fueglistaler I, et al. Clinical and histopathological correlations of FC release in colorectal carcinoma. World J Gastroenterol. 2014;20:4994–9.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Moum B, Jahnsen J, Bernklev T. FC variability in Crohn’s disease. Inflamm Bowel Dis. 2010;16:1091–2.

    Article  PubMed  Google Scholar 

  126. Abraham BP, Kane S. Fecal markers: calprotectin and lactoferrin. Gastroenterol Clin N Am. 2012;41(2):483–95.

    Article  Google Scholar 

  127. Menees SB, Powell C, Kurlander J, et al. A meta-analysis of the utility of C-reactive protein, erythrocyte sedimentation rate, fecal calprotectin, and fecal lactoferrin to exclude inflammatory bowel disease in adults with IBS. Am J Gastroenterol. 2015;110(3):444–54.

    Article  CAS  PubMed  Google Scholar 

  128. Kaiser T, Langhorst J, Wittkowski H, et al. Faecal S100A12 as a non-invasive marker distinguishing inflammatory bowel disease from irritable bowel syndrome. Gut. 2007;56:1706–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Sidler M, Leach S, Day A. Fecal S100A12 and fecal calprotectin as noninvasive markers for inflammatory bowel disease in children. Inflamm Bowel Dis. 2008;14:359–66.

    Article  PubMed  Google Scholar 

  130. Nakarai A, Kato J, Sakiko Hiraoka S, et al. Evaluation of mucosal healing of ulcerative colitis by a quantitative fecal immunochemical test. Am J Gastroenterol. 2013;108:83–9.

    Article  CAS  PubMed  Google Scholar 

  131. Mooiweer E, Fidder HH, Siersema PD, et al. Fecal hemoglobin and calprotectin are equally effective in identifying patients with inflammatory bowel disease with active endoscopic inflammation. Inflamm Bowel Dis. 2014;20:307–14.

    Article  PubMed  Google Scholar 

  132. Takashima S, Kato J, Hiraoka S, et al. Evaluation of mucosal healing in ulcerative colitis by fecal calprotectin vs. fecal immunochemical test. Am J Gastroenterol. 2015;110:873–80.

    Article  PubMed  Google Scholar 

  133. Kennedy NA, Clark A, Walkden A, et al. Clinical utility and diagnostic accuracy of faecal calprotectin for IBD at first presentation to gastroenterology services in adults aged 16–50 years. J Crohns Colitis. 2015;9(1):41–9.

    PubMed  PubMed Central  Google Scholar 

  134. Froehlich F, Gonvers JJ. Diagnostic yield of colonoscopy by indication. In: Wayne JD, Rex DK, Williams CB, editors. Colonoscopy: principles and practice. Massachusetts: Wiley-Blackwell; 2003. p. 111.

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Canadian Institutes of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waliul Islam Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikhtaire, S., Shajib, M.S., Reinisch, W. et al. Fecal calprotectin: its scope and utility in the management of inflammatory bowel disease. J Gastroenterol 51, 434–446 (2016). https://doi.org/10.1007/s00535-016-1182-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-016-1182-4

Keywords

Navigation