Skip to main content

Advertisement

Log in

Helicobacter pylori infection causes hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Epidemiological studies have indicated that patients with chronic Helicobacter pylori infection have an increased risk of developing type 2 diabetes mellitus, but the underlying mechanisms remain largely unknown. This study aimed to investigate whether H. pylori infection contributes to the development of insulin resistance, as well as the underlying mechanisms both in vivo and in vitro.

Methods

The effect of H. pylori infection on glucose metabolism was evaluated in humans and mouse models. The role of the c-Jun/miR-203/suppressor of cytokine signaling 3 (SOCS3) pathway in H. pylori-induced insulin resistance was determined in vitro and was validated in vivo.

Results

Average fasting glucose levels were increased in patients (P = 0.012) and mice (P = 0.004) with H. pylori infection. Diabetic mice with H. pylori infection showed impaired glucose metabolism and insulin tolerance and hyperinsulinemia. Furthermore, H. pylori infection impaired insulin signaling in primary hepatocytes. H. pylori infection could upregulate SOCS3, a well-known insulin signaling inhibitor, by downregulating miR-203. SOCS3 overexpression interfered with insulin signaling proteins, and knockdown of SOCS3 alleviated H. pylori-induced impairment of insulin signaling. The transcription factor c-Jun, which affects gene expression, was induced by H. pylori infection and suppressed miR-203 expression.

Conclusions

Our results demonstrated that H. pylori infection induced hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway and provide possible implications with regard to resolving insulin resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karpe F, Dickmann JR, Frayn KN. Fatty acids, obesity, and insulin resistance: time for a reevaluation. Diabetes. 2011;60:2441–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Suzuki H, Franceschi F, Nishizawa T, et al. Extragastric manifestations of Helicobacter pylori infection. Helicobacter. 2011;16:65–9.

    Article  PubMed  Google Scholar 

  3. Koch M, Meyer TF, Moss SF. Inflammation, immunity, vaccines for Helicobacter pylori infection. Helicobacter. 2013;18:18–23.

    Article  PubMed  Google Scholar 

  4. Wang F, Meng W, Wang B, et al. Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 2014;345:196–202.

    Article  CAS  PubMed  Google Scholar 

  5. Jeon CY, Haan MN, Cheng C, et al. Helicobacter pylori infection is associated with an increased rate of diabetes. Diabetes Care. 2012;35:520–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Gunji T, Matsuhashi N, Sato H, et al. Helicobacter pylori infection is significantly associated with metabolic syndrome in the Japanese population. Am J Gastroenterol. 2008;103:3005–10.

    Article  CAS  PubMed  Google Scholar 

  7. Ukarapol N, Bégué RE, Hempe J, et al. Association between Helicobacter felis-induced gastritis and elevated glycated hemoglobin levels in a mouse model of type 1 diabetes. J Infect Dis. 2002;185:1463–7.

    Article  PubMed  Google Scholar 

  8. Zhou X, Zhang C, Wu J, et al. Association between Helicobacter pylori infection and diabetes mellitus: a meta-analysis of observational studies. Diabetes Res Clin Pract. 2013;99:200–8.

    Article  PubMed  Google Scholar 

  9. Polyzos SA, Kountouras J, Zavos C, et al. The association between Helicobacter pylori infection and insulin resistance: a systematic review. Helicobacter. 2011;16:79–88.

    Article  CAS  PubMed  Google Scholar 

  10. Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell. 2012;148:1172–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;22(13):239–50.

    Article  Google Scholar 

  12. Mori MA, Thomou T, Boucher J, et al. Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Investig. 2014;124:3339–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Liu H, Cao MM, Wang Y, et al. Endoplasmic reticulum stress is involved in the connection between inflammation and autophagy in type 2 diabetes. Gen Comp Endocrinol. 2015;210:124–9.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang Y, Biswas SK, Steinle JJ. Serine 307 on insulin receptor substrate 1 is required for SOCS3 and TNF-α signaling in the rMC-1 cell line. Mol Vis. 2014;20:1463–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Serrano-Marco L, Barroso E, El Kochairi I, et al. The peroxisome proliferator-activated receptor (PPAR) β/δ agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia. 2012;55:743–51.

    Article  CAS  PubMed  Google Scholar 

  16. Aggarwal BB. Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-κB. Ann Rheum Dis. 2000;59:i6–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Krebs DL, Hilton DJ. A new role for SOCS in insulin action. Suppressor of cytokine signaling. Sci STKE. 2003;169:pe6.

    Google Scholar 

  18. Pedroso JA, Buonfiglio DC, Cardinali LI, et al. Inactivation of SOCS3 in leptin receptor-expressing cells protects mice from diet-induced insulin resistance but does not prevent obesity. Mol Metab. 2014;3:608–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Zolotnik IA, Figueroa TY, Yaspelkis BB 3rd. Insulin receptor and IRS-1 co-immunoprecipitation with SOCS-3, and IKKα/β phosphorylation are increased in obese Zucker rat skeletal muscle. Life Sci. 2012;91:816–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Lee KH, Biswas A, Liu YJ, et al. Proteasomal degradation of Nod2 protein mediates tolerance to bacterial cell wall components. J Biol Chem. 2012;287:39800–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Valdes CT, Elkind-Hirsch KE. Intravenous glucose tolerance test-derived insulin sensitivity changes during the menstrual cycle. J Clin Endocrinol Metab. 1991;72:642–6.

    Article  CAS  PubMed  Google Scholar 

  22. Yang YM, Seo SY, Kim TH, et al. Decrease of microRNA-122 causes hepatic insulin resistance by inducing protein tyrosine phosphatase 1B, which is reversed by licorice flavonoid. Hepatology. 2012;56:2209–20.

    Article  CAS  PubMed  Google Scholar 

  23. Hsieh MC, Wang SS, Hsieh YT, et al. Helicobacter pylori infection associated with high HbA1c and type 2 diabetes. Eur J Clin Investig. 2013;43:949–56.

    Article  CAS  Google Scholar 

  24. Shin DW, Kwon HT, Kang JM, et al. Association between metabolic syndrome and Helicobacter pylori infection diagnosed by histologic status and serological status. J Clin Gastroenterol. 2012;46:840–5.

    Article  PubMed  Google Scholar 

  25. Eshraghian A, Hashemi SA, Jahromi AH, et al. Helicobacter pylori infection as a risk factor for insulin resistance. Dig Dis Sci. 2009;54:1966–70.

    Article  PubMed  Google Scholar 

  26. Naja F, Nasreddine L, Hwalla N, et al. Association of H. pylori infection with insulin resistance and metabolic syndrome among Lebanese adults. Helicobacter. 2012;17:444–51.

    Article  CAS  PubMed  Google Scholar 

  27. Ukarapol N, Bégué RE, Hempe J, et al. Association between Helicobacter felis-induced gastritis and elevated glycated hemoglobin levels in a mouse model of type 1 diabetes. J Infect Dis. 2002;185:1463–7.

    Article  PubMed  Google Scholar 

  28. Bahadoran Z, Mirmiran P, Azizi F. Potential efficacy of broccoli sprouts as a unique supplement for management of type 2 diabetes and its complications. J Med Food. 2013;16:375–82.

    Article  CAS  PubMed  Google Scholar 

  29. Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014;15:79–97.

    Article  CAS  PubMed  Google Scholar 

  30. Bridle KR, Li L, O’Neill R, et al. Coordinate activation of intracellular signaling pathways by insulin-like growth factor-1 and platelet-derived growth factor in rat hepatic stellate cells. J Lab Clin Med. 2006;147:234–41.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Zhou B, Zhang F, et al. Amyloid-β induces hepatic insulin resistance by activating JAK2/STAT3/SOCS-1 signaling pathway. Diabetes. 2012;61:1434–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ueki K, Kondo T, Kahn CR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24:5434–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Cha B, Kim KH, Matsui H, et al. Expression of suppressors of cytokine signaling-3 in Helicobacter pylori-infected rat gastric mucosal RGM-1cells. Ann N Y Acad Sci. 2007;1096:24–8.

    Article  CAS  PubMed  Google Scholar 

  34. Jorgensen SB, O’Neill HM, Sylow L, et al. Deletion of skeletal muscle SOCS3 prevents insulin resistance in obesity. Diabetes. 2013;62:56–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Emanuelli B, Peraldi P, Filloux C, et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-α in the adipose tissue of obese mice. J Biol Chem. 2001;276:47944–9.

    Article  CAS  PubMed  Google Scholar 

  36. Kim YK, Heo I, Kim VN. Modifications of small RNAs and their associated proteins. Cell. 2010;143:703–9.

    Article  CAS  PubMed  Google Scholar 

  37. Rottiers V, Näär AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sekine S, Ogawa R, Ito R, et al. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology. 2009;136:2304–15.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Matsushima K, Isomoto H, Inoue N, et al. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 2011;128:361–70.

    Article  CAS  PubMed  Google Scholar 

  40. Dontula R, Dinasarapu A, Chetty C, et al. MicroRNA 203 modulates glioma cell migration via Robo1/ERK/MMP-9 signaling. Genes Cancer. 2013;4:285–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Sonkoly E, Lovén J, Xu N, et al. MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis. 2012;1:e3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  CAS  PubMed  Google Scholar 

  43. Slomiany BL, Slomiany A. Involvement of p38 MAPK-dependent activator protein (AP-1) activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by ghrelin. Inflammopharmacology. 2013;21:67–78.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (81270476 and 81072032). The authors thank Hong Lu from the Department of Gastroenterology in Shanghai Renji Hospital for her kind help in providing H. pylori SS1 strain. Xiaoying Zhou performed the in vitro experiments and wrote the first draft of the manuscript. Wei Liu and Min Gu performed the in vivo study. Guoxin Zhang reviewed and revised the manuscript. Xiaoying Zhou is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoying Zhou.

Electronic supplementary material

Below is the link to the electronic supplementary material.

535_2015_1051_MOESM1_ESM.tif

Supplementary material 1 (TIFF 500 kb). Fig. S1 a Body weight of mice in different groups. b Food intake of mice in different groups. c Effect of Helicobacter pylori infection on oral glucose tolerance in mice. Mice in all groups received glucose orally, and blood samples were collected at 0, 30, 60, 90, and 120 min. d Mice fasted overnight for 16 h, and blood samples were collected 0, 2, 5, 15, 30, 60, and 120 min after the injection of glucose, and serum insulin levels were determined. Each point is the mean ± the standard error for five or six separate mice

535_2015_1051_MOESM2_ESM.tif

Supplementary material 2 (TIFF 801 kb). Fig. S2 a The locations of the predicted miRNA binding sites within the 3′ UTR of SOCS3 mRNA (top) and qRT-PCR assays for the miRNAs (bottom). b Phosphorylation states of IRS-1, Akt, and GSK3β in cells transfected with miR-203 mimics/inhibitors with or without Helicobacter pylori infection. Significantly different compared with the control, asterisk P < 0.05

535_2015_1051_MOESM3_ESM.tif

Supplementary material 3 (TIFF 461 kb). Fig. S3 a The effect of Helicobacter pylori infection on miR-203 3′ UTR luciferase activities. b The effect of H. pylori infection on SOCS3 3′ UTR luciferase activities. c Immunofluorescence analysis of SOCS3 protein expression level in cells transfected with miR-203 mimics or inhibitors. Significantly different compared with the control, asterisk P < 0.05

535_2015_1051_MOESM4_ESM.tif

Supplementary material 4 (TIFF 283 kb). Fig. S4 Expression of a miR-203, b c-Jun, and c SOCS3 in cells with culture medium of Helicobacter pylori infection compared with the control. Significantly different as compared with control, one asterisk P < 0.05, two asterisks P < 0.01

Supplementary material 5 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, W., Gu, M. et al. Helicobacter pylori infection causes hepatic insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway. J Gastroenterol 50, 1027–1040 (2015). https://doi.org/10.1007/s00535-015-1051-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-015-1051-6

Keywords

Navigation