Skip to main content

Advertisement

Log in

Correlation between hypersensitivity induced by esophageal acid infusion and the baseline impedance level in patients with suspected gastroesophageal reflux

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the relevance between the pH parameters and baseline impedance level or esophageal hypomotility in patients with suspected gastroesophageal reflux.

Method

The recordings of 51 patients with heartburn, acid regurgitation, globus or noncardiac chest pain were analyzed. Evaluation included a 24-h multichannel intraluminal impedance-pH test while on off-proton pump inhibitor therapy over 1 week, high-resolution manometry and Bernstein test. Mean baseline impedance level at the most distal portion of the impedance channel was assessed manually. Esophageal hypomotility was evaluated using transitional zone defect (TZD) and distal break (DB) length measurement.

Result

In the study subjects (n = 51), 6 had a DeMeester score of more than 14.7 and 14 had a positive symptom index. The Bernstein test was positive in ten patients. The baseline impedance level was inversely correlated with the acid exposure time % (r = −0.660, P < 0.001). Also, all reflux and weakly acid reflux time % measured by impedance monitoring showed a weak correlation with TZD + DB length (r = 0.327 and 0.324, P = 0.019 and 0.020, respectively). Although a positive Bernstein test has no relevance for the acid exposure time or acid-related symptoms as represented by the DeMeester score or symptom index, the baseline impedance level was significantly lower in patients with a positive Bernstein test than in those with a negative one (2,628.4 ± 862.7 vs. 1,752.2 ± 611.1 Ω, P = 0.004).

Conclusion

A lower baseline impedance level is closely related to increased esophageal acid exposure. Hypersensitivity induced by esophageal acid infusion might be attributed to acid-induced mucosal changes of the esophagus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Levin MDTR, Schmittdiel MAJA, Kunz MPPK, Henning MSJM, Henke CJ, Colby CJ, et al. Costs of acid-related disorders to a health maintenance organization. Am J Med. 1997;103(6):520–8.

    Article  CAS  PubMed  Google Scholar 

  2. Farré R, Fornari F, Blondeau K, Vieth M, De Vos R, Bisschops R, et al. Acid and weakly acidic solutions impair mucosal integrity of distal exposed and proximal non-exposed human oesophagus. Gut. 2010;59(2):164–9.

    Article  PubMed  Google Scholar 

  3. Barlow WJ, Orlando RC. The pathogenesis of heartburn in nonerosive reflux disease: a unifying hypothesis. Gastroenterology. 2005;128(3):771–8.

    Article  PubMed  Google Scholar 

  4. Tobey NA, Carson JL, Alkiek RA, Orlando R. Dilated intercellular spaces: a morphological feature of acid reflux–damaged human esophageal epithelium. Gastroenterology. 1996;111(5):1200–5.

    Article  CAS  PubMed  Google Scholar 

  5. Caviglia R, Ribolsi M, Maggiano N, Gabbrielli AM, Emerenziani S, Guarino MPL, et al. Dilated intercellular spaces of esophageal epithelium in nonerosive reflux disease patients with physiological esophageal acid exposure. Am J Gastroenterol. 2005;100(3):543–8.

    Article  PubMed  Google Scholar 

  6. Bredenoord AJ, Tutuian R, Smout AJ, Castell DO. Technology review: esophageal impedance monitoring. Am J Gastroenterol. 2007;102(1):187–94.

    Article  PubMed  Google Scholar 

  7. Farré R, Blondeau K, Clement D, Vicario M, Cardozo L, Vieth M, et al. Evaluation of oesophageal mucosa integrity by the intraluminal impedance technique. Gut. 2011;60(7):885–92.

    Article  PubMed  Google Scholar 

  8. Kessing BF, Bredenoord AJ, Weijenborg PW, Hemmink GJ, Loots CM, Smout A. Esophageal acid exposure decreases intraluminal baseline impedance levels. Am J Gastroenterol. 2011;106(12):2093–7.

    Article  CAS  PubMed  Google Scholar 

  9. Clouse RE, Prakash C. Topographic esophageal manometry: an emerging clinical and investigative approach. Dig Dis. 2000;18(2):64–74.

    Article  CAS  PubMed  Google Scholar 

  10. Ghosh S, Pandolfino J, Kwiatek M, Kahrilas P. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20(12):1283–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Pohl D, Ribolsi M, Savarino E, Frühauf H, Fried M, Castell DO, et al. Characteristics of the esophageal low-pressure zone in healthy volunteers and patients with esophageal symptoms: assessment by high-resolution manometry. Am J Gastroenterol. 2008;103(10):2544–9.

    Article  PubMed  Google Scholar 

  12. Kumar N, Porter RF, Chanin JM, Gyawali CP. Analysis of intersegmental trough and proximal latency of smooth muscle contraction using high-resolution esophageal manometry. J Clin Gastroenterol. 2012;46(5):375–81.

    Article  PubMed  Google Scholar 

  13. Han MS, Lee H, Jo JH, Cho IR, Park JC, Shin SK, et al. Transition zone defect associated with the response to proton pump inhibitor treatment in patients with globus sensation. J Gastroenterol Hepatol. 2013;28(6):954–62.

    Article  PubMed  Google Scholar 

  14. Roman S, Lin Z, Kwiatek MA, Pandolfino JE, Kahrilas PJ. Weak peristalsis in esophageal pressure topography: classification and association with dysphagia. Am J Gastroenterol. 2010;106(2):349–56.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Pandolfino JE, Roman S. High-resolution manometry: an atlas of esophageal motility disorders and findings of GERD using esophageal pressure topography. Thorac Surg Clin. 2011;21(4):465–75.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Ho KY, Cheung TK, Wong BC. Gastroesophageal reflux disease in Asian countries: disorder of nature or nurture? J Gastroenterol Hepatol. 2006;21(9):1362–5.

    PubMed  Google Scholar 

  17. Miwa H, Minoo T, Hojo M, Yaginuma R, Nagahara A, Kawabe M, et al. Oesophageal hypersensitivity in Japanese patients with non-erosive gastro-oesophageal reflux diseases. Aliment Pharmacol Ther. 2004;20(s1):112–7.

    Article  PubMed  Google Scholar 

  18. Lundell L, Dent J, Bennett JR, Blum AL, Armstrong D, Galmiche JP, et al. Endoscopic assessment of oesophagitis: clinical and functional correlates and further validation of the Los Angeles classification. Gut. 1999;45(2):172–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Bogte A, Bredenoord A, Oors J, Siersema P, Smout A. Normal values for esophageal high-resolution manometry. Neurogastroenterol Motil. 2013;25(9):762-e579.

    Article  PubMed  Google Scholar 

  20. Bredenoord AJ, Fox M, Kahrilas PJ, Pandolfino JE, Schwizer W, Smout A. Chicago classification criteria of esophageal motility disorders defined in high resolution esophageal pressure topography1. Neurogastroenterol Motil. 2012;24(s1):57–65.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pandolfino JE, Kim H, Ghosh SK, Clarke JO, Zhang Q, Kahrilas PJ. High-resolution manometry of the EGJ: an analysis of crural diaphragm function in GERD. Am J Gastroenterol. 2007;102(5):1056–63.

    Article  PubMed  Google Scholar 

  22. Zentilin P, Iiritano E, Dulbecco P, Bilardi C, Savarino E, De Conca S, et al. Normal values of 24-h ambulatory intraluminal impedance combined with pH-metry in subjects eating a Mediterranean diet. Dig Liv Dis. 2006;38(4):226–32.

    Article  CAS  Google Scholar 

  23. Wiener G, Richter J, Copper J, Wu W, Castell D. The symptom index: a clinically important parameter of ambulatory 24-hour esophageal pH monitoring. Am J Gastroenterol. 1988;83(4):358–61.

    CAS  PubMed  Google Scholar 

  24. Jamieson JR, Stein HJ, DeMeester TR, Bonavina L, Schwizer W, Hinder RA, et al. Ambulatory 24-h esophageal pH monitoring: normal values, optimal thresholds, specificity, sensitivity, and reproducibility. Am J Gastroenterol. 1992;87:1102.

    CAS  PubMed  Google Scholar 

  25. Vaezi MF, Richter JE. Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology. 1996;111(5):1192–9.

    Article  CAS  PubMed  Google Scholar 

  26. Farre R, van Malenstein H, De Vos R, Geboes K, Depoortere I, Berghe PV, et al. Short exposure of oesophageal mucosa to bile acids, both in acidic and weakly acidic conditions, can impair mucosal integrity and provoke dilated intercellular spaces. Gut. 2008;57(10):1366–74.

    Article  CAS  PubMed  Google Scholar 

  27. Borrelli O, Salvatore S, Mancini V, Ribolsi M, Gentile M, Bizzarri B, et al. Relationship between baseline impedance levels and esophageal mucosal integrity in children with erosive and non-erosive reflux disease. Neurogastroenterol Motil. 2012;24(9):828-e394.

    Article  PubMed  Google Scholar 

  28. Bulsiewicz WJ, Kahrilas PJ, Kwiatek MA, Ghosh SK, Meek A, Pandolfino JE. Esophageal pressure topography criteria indicative of incomplete bolus clearance: a study using high-resolution impedance manometry. Am J Gastroenterol. 2009;104(11):2721–8.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Woodland P, Al-Zinaty M, Yazaki E, Sifrim D. In vivo evaluation of acid-induced changes in oesophageal mucosa integrity and sensitivity in non-erosive reflux disease. Gut. 2013;62(9):1256–61.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are indebted to J. Patrick Barron, Professor Emeritus, Tokyo Medical University, and Adjunct Professor, Seoul National University Bundang Hospital, for his pro bono editing of this manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Min Shin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

535_2014_1013_MOESM1_ESM.tif

Figure S1. Measurement of the transition zone defect (TZD) and distal break (DB)length. TZD was measured as the length (y axis) in centimeters of the break between the skeletal and smooth muscle contraction segments in the 20-mmHg isobaric contour. DB was measured as the length in centimeters of a visible break at the distal pressure troughs in the 20-mmHg isobaric contour. (TIFF 11157 kb)

535_2014_1013_MOESM2_ESM.tif

Figure S2. Diagnosis of hiatal hernia using endoscopy or high-resolution manometry.Endoscopically, the gastroesophageal junction (EGJ) at 2 cm or more above the diaphragmatic pinchcock is considered as the presence of hiatal hernia (C). In high-resolution manometry, the two main EGJ components are a lower esophageal sphincter (LES) and crural diaphragm (CD). Type I: CD and LES are completely superimposed (D). Type II: minimal separation between CD and LES during inspiration (E). The nadir between two peaks remains above the gastric baseline pressure. Type III: wide separation between CD and LES (>2 cm, F) (TIFF 7403 kb)

535_2014_1013_MOESM3_ESM.tif

Figure S3. Time period selection for measurement of esophageal impedance baseline levels. Mean impedance value of the 12 selected periods was considered baseline impedance. (TIFF 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, A.Y., Shin, C.M., Kim, N. et al. Correlation between hypersensitivity induced by esophageal acid infusion and the baseline impedance level in patients with suspected gastroesophageal reflux. J Gastroenterol 50, 735–743 (2015). https://doi.org/10.1007/s00535-014-1013-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-014-1013-4

Keywords

Navigation