Skip to main content

Advertisement

Log in

Thrombophilia differences in splanchnic vein thrombosis and lower extremity deep venous thrombosis in North America

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

The utility of thrombophilia testing in patients with splanchnic vein thrombosis (SpVT) has not previously been rigorously evaluated. The purpose of this study was to characterize differences in the prevalence of thrombophilia in patients with SpVT involving portal (PVT), mesenteric (MVT), splenic (SVT), or hepatic (HVT) veins in isolation or with multisegmental (M-SpVT) involvement compared to patients with lower extremity deep vein thrombosis (DVT).

Methods

An inception cohort of patients with incident SpVT was identified for whom comprehensive thrombophilia testing was performed between 1995 and 2005 and compared to DVT controls.

Results

341 patients with SpVT (mean age 50 ± 16 years, 53 % women) including isolated PVT (n = 112), MVT (n = 67), HVT (n = 22), SVT (n = 11), and M-SpVT (n = 129) involvement and 3621 DVT controls (mean age 55 ± 16 years, 56 % women) had comprehensive thrombophilia testing. The prevalence of abnormal results was similar for SpVT (24.6 %) and DVT (25.9 %) patients. “Strong” thrombophilias were more prevalent among SpVT patients (12.3 vs. 8.5 %, p = 0.0168). Patients with splenic (45.5 %) and mesenteric (41.8 %) thrombosis had the highest thrombophilia prevalence. Protein S deficiency was more common in SpVT patients (3.5 vs. 0.9 %, p < 0.001). In contrast, FV Leiden was more prevalent among DVT patients (15.8 vs. 10.9 %, p = 0.0497).

Conclusion

The prevalence of selected thrombophilia factors differ comparing SpVT and DVT patients. The prevalence is particularly high for patients with splenic and mesenteric vein thrombosis. Whereby the finding of strong thrombophilia impacts duration of anticoagulant therapy, such testing is warranted in the evaluation of patients with unprovoked SpVT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. McBane RD, Wysokinski WE. Treatment of venous thrombosis at unusual sites. Curr Treat Options Cardiovasc Med. 2008;10(2):136–45.

    Article  PubMed  Google Scholar 

  2. Thatipelli MR, McBane RD, Hodge DO, et al. Survival and recurrence in patients with splanchnic vein thromboses. Clin Gastroenterol Hepatol. 2010;8(2):200–5.

    Article  PubMed  Google Scholar 

  3. Plessier A, Darwish-Murad S, Hernandez-Guerra M, et al. Acute portal vein thrombosis unrelated to cirrhosis: a prospective multicenter follow-up study. Hepatology. 2010;51(1):210–8.

    Article  PubMed  Google Scholar 

  4. Mushlin PS, Gelman S. Hepatic physiology and pathophysiology. In: Miller RD, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller's Anesthesia, 7th ed. Churchill Livingstone, an Imprint of Elsevier; 2009. p. 411–20.

  5. Shetty S, Ghosh K. Thrombophilic dimension of Budd Chiari syndrome and portal venous thrombosis—a concise review. Thromb Res. 2011;127(6):505–12.

    Article  PubMed  CAS  Google Scholar 

  6. Pinto RB, Silveira TR, Bandinelli E, et al. Portal vein thrombosis in children and adolescents: the low prevalence of hereditary thrombophilic disorders. J Pediatr Surg. 2004;39(9):1356–61.

    Article  PubMed  Google Scholar 

  7. Dentali F, Galli M, Gianni M, et al. Inherited thrombophilic abnormalities and risk of portal vein thrombosis. A meta-analysis. Thromb Haemost. 2008;99(4):675–82.

    PubMed  CAS  Google Scholar 

  8. Janssen HL, Meinardi JR, Vleggaar FP, et al. Factor V Leiden mutation, prothrombin gene mutation, and deficiencies in coagulation inhibitors associated with Budd-Chiari syndrome and portal vein thrombosis: results of a case-control study. Blood. 2000;96(7):2364–8.

    PubMed  CAS  Google Scholar 

  9. Deltenre P, Denninger MH, Hillaire S, et al. Factor V Leiden related Budd–Chiari syndrome. Gut. 2001;48(2):264–8.

    Article  PubMed  CAS  Google Scholar 

  10. Smalberg JH, Kruip MJ, Janssen HL, et al. Hypercoagulability and hypofibrinolysis and risk of deep vein thrombosis and splanchnic vein thrombosis: similarities and differences. Arterioscler Thromb Vasc Biol. 2011;31(3):485–93.

    Article  PubMed  CAS  Google Scholar 

  11. De Stefano V, Martinelli I. Splanchnic vein thrombosis: clinical presentation, risk factors and treatment. Intern Emerg Med. 2010;5(6):487–94.

    Article  PubMed  Google Scholar 

  12. Rajani R, Melin T. Björnsson et al. Budd-Chiari syndrome in Sweden: epidemiology, clinical characteristics and survival—an 18-year experience. Liver Int. 2009;29(2):253–9.

    Article  PubMed  Google Scholar 

  13. Mahmoud AE, Elias E, Beauchamp N, et al. Prevalence of the factor V Leiden mutation in hepatic and portal vein thrombosis. Gut. 1997;40(6):798–800.

    Article  PubMed  CAS  Google Scholar 

  14. Amitrano L, Brancaccio V, Guardascione MA, et al. Inherited coagulation disorders in cirrhotic patients with portal vein thrombosis. Hepatology. 2000;31(2):345–8.

    Article  PubMed  CAS  Google Scholar 

  15. Primignani M, Martinelli I, Bucciarelli P, et al. Risk factors for thrombophilia in extrahepatic portal vein obstruction. Hepatology. 2005;41(3):603–8.

    Article  PubMed  CAS  Google Scholar 

  16. Murad DS, Plessier A, Hernandez-Guerra M et al. Etiology, management, and outcome of the Budd–Chiari syndrome. Ann Intern Med. 2009; 151(3):167–75.

    Google Scholar 

  17. Francis RB, Seyfert U. Rapid amidolytic assay for protein C in whole plasma using an activator from the venom of agkistrodon contortrix. Am J Clin Pathol. 1987;87:619–25.

    PubMed  CAS  Google Scholar 

  18. Laroche P, Plassart V, Amiral J. Rapid quantitative latex immunoassays for diagnosis of thrombotic disorders. Thromb Haemost. 1989;62:379.

    Google Scholar 

  19. Zöller B. García de Frutos P, Dahlbäck B. Evaluation of the relation between protein S and C4b-binding protein isoforms in hereditary protein S deficiency demonstrating type I and type III deficiencies to be phenotypic variants of the same genetic disease. Blood. 1995;85:3524–31.

    PubMed  Google Scholar 

  20. Tollefsen DM. Laboratory Diagnosis of Antithrombin and Heparin Cofactor II Deficiency. Sem Thromb Haemost. 1990;16:162–8.

    Article  CAS  Google Scholar 

  21. Kapiotis S, Quehenberger P, Jilma B, et al. Improved characteristics of APC resistance assay, coatest aPC resistance by predilution of samples with Factor V deficient plasma. Am J Clin Pathol. 1996;106:588–93.

    PubMed  CAS  Google Scholar 

  22. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated Protein C. Nature. 1994;369:64–7.

    Article  PubMed  CAS  Google Scholar 

  23. Poort SR, Rosendaal FR, Reitsma PH, et al. A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood. 1996;88:3698–703.

    PubMed  CAS  Google Scholar 

  24. Proven A, Bartlett RP, Moder KG, et al. Clinical importance of positive test results for lupus anticoagulant and anticardiolipin antibodies. Mayo Clin Proc. 2004;79(4):467–75.

    Article  PubMed  Google Scholar 

  25. Magera MJ, Lacey JM, Casetta B, Rinaldo P. Method for the determination of total homocysteine in plasma and urine by stable isotope dilution and electrospray tandem mass spectrometry. Clin Chem. 1999;45(9):1517–22.

    PubMed  CAS  Google Scholar 

  26. Foy P, Moll S. Thrombophilia: 2009 update. Curr Treat Options Cardiovasc Med. 2009;11(2):114–28.

    Article  PubMed  Google Scholar 

  27. SAS Institute Inc. SAS®/STAT User’s Guide, version 9 ed. Cary: SAS Institute Inc.; 2005.

    Google Scholar 

  28. Marchiori A, Mosena L, Prins MH, et al. The risk of recurrent venous thromboembolism among heterozygous carriers of factor V Leiden or prothrombin G20210A mutation. A systematic review of prospective studies. Haematologica. 2007;92(8):1107–14.

    Article  PubMed  Google Scholar 

  29. Schwarz HP. Extra-hepatic synthesis of protein S. Thromb Haemost. 1990;64(2):333–4.

    PubMed  CAS  Google Scholar 

  30. Denninger MH, Chaït Y, Casadevall N, et al. Cause of portal or hepatic venous thrombosis in adults: the role of multiple concurrent factors. Hepatology. 2000;31(3):587–91.

    Article  PubMed  CAS  Google Scholar 

  31. Violi F, Ferro D, Basili S, et al. Relation between lupus anticoagulant and splanchnic venous thrombosis in cirrhosis of the liver. BMJ. 1994;309(6949):239–40.

    Article  PubMed  CAS  Google Scholar 

  32. Patel RK, Lea NC, Heneghan MA, et al. Prevalence of the activating JAK2 tyrosine kinase mutation V617F in the Budd-Chiari syndrome. Gastroenterology. 2006;130(7):2031–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Biostatistical support was provided by an internal grant from the Mayo Clinic Division of Cardiology.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waldemar E. Wysokinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutkowska, E., McBane, R.D., Tafur, A.J. et al. Thrombophilia differences in splanchnic vein thrombosis and lower extremity deep venous thrombosis in North America. J Gastroenterol 48, 1111–1118 (2013). https://doi.org/10.1007/s00535-012-0728-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0728-3

Keywords

Navigation