Skip to main content
Log in

Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Glucose intolerance in patients with liver cirrhosis (LC), known as hepatogenous diabetes, is thought to be distinct from type 2 diabetes (T2DM) in some aspects. Hyperinsulinemia and/or insulin resistance in liver disease is associated with hepatocarcinogenesis, growth of hepatocellular carcinoma, and poor prognosis. However, the pathophysiological processes in islets that are responsible for hyperinsulinemia in LC are still not precisely known. Therefore, we investigated the histopathological differences in islets of Langerhans cells between LC and T2DM.

Methods

A total of 35 human autopsy pancreatic tissue samples were used in this study (control, n = 18; T2DM, n = 6; LC, n = 11). The expression of insulin, glucagon, somatostatin, pancreatic duodenal homeobox-1 (PDX-1), proliferating cell nuclear antigen (PCNA), and Ki-67 was examined using immunohistochemistry and quantitated by image analysis.

Results

Islet hypertrophy and a significant increase in PCNA-positive cells in islets were observed in the tissues from LC cases. The insulin-positive areas in islets were significantly decreased in LC cases compared with control and T2DM cases (P = 0.001, P = 0.035, respectively), whereas the PDX-1-positive area was significantly increased in LC cases (P = 0.001) compared with the control. Furthermore, disorganization of pancreatic endocrine cells and nucleocytoplasmic translocation of PDX-1 were both seen in the LC subjects.

Conclusions

In LC, islets undergo hypertrophy and exhibit paradoxical expression of insulin and PDX-1. In the subjects autopsied, insulin expression was decreased, whereas expression of the pancreatic transcription factor PDX-1 was increased in LC. These results point to important distinctions between LC and T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PDX-1:

Pancreatic duodenal homeobox-1

PCNA:

Proliferating cell nuclear antigen

BMI:

Body mass index

HbA1c:

Hemoglobin A1c

References

  1. Chang-Chen KJ, Mullur R, Bernal-Mizrachi E. Beta-cell failure as a complication of diabetes. Rev Endocr Metab Disord. 2008;9:329–43.

    Article  PubMed  CAS  Google Scholar 

  2. Roden M, Petersen KF, Shulman GI. Nuclear magnetic resonance studies of hepatic glucose metabolism in humans. Recent Prog Horm Res. 2001;56:219–37.

    Article  PubMed  CAS  Google Scholar 

  3. Roden M, Bernroider E. Hepatic glucose metabolism in humans—its role in health and disease. Best Pract Res Clin Endocrinol Metab. 2003;17:365–83.

    Article  PubMed  CAS  Google Scholar 

  4. Radziuk J, Pye S. Hepatic glucose uptake, gluconeogenesis and the regulation of glycogen synthesis. Diabetes Metab Res Rev. 2001;17:250–72.

    Article  PubMed  CAS  Google Scholar 

  5. Ishida T, Chap Z, Chou J, Lewis R, Hartley C, Entman M, et al. Differential effects of oral, peripheral intravenous, and intraportal glucose on hepatic glucose uptake and insulin and glucagon extraction in conscious dogs. J Clin Invest. 1983;72:590–601.

    Article  PubMed  CAS  Google Scholar 

  6. Tappy L, Minehira K. New data and new concepts on the role of the liver in glucose homeostasis. Curr Opin Clin Nutr Metab Care. 2001;4:273–7.

    Article  PubMed  CAS  Google Scholar 

  7. Cotrozzi G, Casini Raggi V, Relli P, Buzzelli G. Role of the liver in the regulation of glucose metabolism in diabetes and chronic liver disease. Ann Ital Med Int. 1997;12:84–91.

    PubMed  CAS  Google Scholar 

  8. Nielsen MF, Caumo A, Aagaard NK, Chandramouli V, Schumann WC, Landau BR, et al. Contribution of defects in glucose uptake to carbohydrate intolerance in liver cirrhosis: assessment during physiological glucose and insulin concentrations. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1135–43.

    Article  PubMed  CAS  Google Scholar 

  9. Megyesi C, Samols E, Marks V. Glucose tolerance and diabetes in chronic liver disease. Lancet. 1967;2:1051–6.

    Article  PubMed  CAS  Google Scholar 

  10. Iwasaki Y, Ohkubo A, Kajinuma H, Akanuma Y, Kosaka K. Degradation and secretion of insulin in hepatic cirrhosis. J Clin Endocrinol Metab. 1978;47:774–9.

    Article  PubMed  CAS  Google Scholar 

  11. Johnson DG, Alberti KG, Faber OK, Binder C. Hyperinsulinism of hepatic cirrhosis: diminished degradation or hypersecretion? Lancet. 1977;1:10–3.

    Article  PubMed  CAS  Google Scholar 

  12. Hashimoto N, Ashida H, Kotoura Y, Nishioka A, Nishiwaki M, Utsunomiya J. Analysis of hepatic encephalopathy after distal splenorenal shunt—PTP image and pancreatic hormone kinetics. Hepatogastroenterology. 1993;40:360–4.

    PubMed  CAS  Google Scholar 

  13. Narita R, Abe S, Kihara Y, Akiyama T, Tabaru A, Otsuki M. Insulin resistance and insulin secretion in chronic hepatitis C virus infection. J Hepatol. 2004;41:132–8.

    Article  PubMed  CAS  Google Scholar 

  14. Greco AV, Mingrone G, Mari A, Capristo E, Manco M, Gasbarrini G. Mechanisms of hyperinsulinaemia in Child’s disease grade B liver cirrhosis investigated in free living conditions. Gut. 2002;51:870–5.

    Article  PubMed  CAS  Google Scholar 

  15. Picardi A, Gentilucci UV, Zardi EM, Caccavo D, Petitti T, Manfrini S, et al. TNF-alpha and growth hormone resistance in patients with chronic liver disease. J Interferon Cytokine Res. 2003;23:229–35.

    Article  PubMed  CAS  Google Scholar 

  16. Shintani Y, Fujie H, Miyoshi H, Tsutsumi T, Tsukamoto K, Kimura S, et al. Hepatitis C virus infection and diabetes: direct involvement of the virus in the development of insulin resistance. Gastroenterology. 2004;126:840–8.

    Article  PubMed  CAS  Google Scholar 

  17. Persico M, Russo R, Persico E, Svelto M, Spano D, Andolfo I, et al. SOCS3 and IRS-1 gene expression differs between genotype 1 and genotype 2 hepatitis C virus-infected HepG2 cells. Clin Chem Lab Med. 2009;47:1217–25.

    Article  PubMed  CAS  Google Scholar 

  18. Kawaguchi T, Yoshida T, Harada M, Hisamoto T, Nagao Y, Ide T, et al. Hepatitis C virus down-regulates insulin receptor substrates 1 and 2 through up-regulation of suppressor of cytokine signaling 3. Am J Pathol. 2004;165:1499–508.

    Article  PubMed  CAS  Google Scholar 

  19. Saito K, Inoue S, Saito T, Kiso S, Ito N, Tamura S, et al. Augmentation effect of postprandial hyperinsulinaemia on growth of human hepatocellular carcinoma. Gut. 2002;51:100–4.

    Article  PubMed  CAS  Google Scholar 

  20. Kaji K, Yoshiji H, Kitade M, Ikenaka Y, Noguchi R, Yoshii J, et al. Impact of insulin resistance on the progression of chronic liver diseases. Int J Mol Med. 2008;22:801–8.

    PubMed  CAS  Google Scholar 

  21. Balkau B, Kahn HS, Courbon D, Eschwege E, Ducimetiere P. Hyperinsulinemia predicts fatal liver cancer but is inversely associated with fatal cancer at some other sites: the Paris Prospective Study. Diabetes Care. 2001;24:843–9.

    Article  PubMed  CAS  Google Scholar 

  22. Miuma S, Ichikawa T, Taura N, Shibata H, Takeshita S, Akiyama M, et al. The level of fasting serum insulin, but not adiponectin, is associated with the prognosis of early stage hepatocellular carcinoma. Oncol Rep. 2009;22:1415–24.

    Article  PubMed  CAS  Google Scholar 

  23. Komura T, Mizukoshi E, Kita Y, Sakurai M, Takata Y, Arai K, et al. Impact of diabetes on recurrence of hepatocellular carcinoma after surgical treatment in patients with viral hepatitis. Am J Gastroenterol. 2007;102:1939–46.

    Article  PubMed  CAS  Google Scholar 

  24. Kawaguchi T, Taniguchi E, Morita Y, Shirachi M, Tateishi I, Nagata E, et al. Association of exogenous insulin or sulphonylurea treatment with an increased incidence of hepatoma in patients with hepatitis C virus infection. Liver Int. 2010;30:479–86.

    Article  PubMed  CAS  Google Scholar 

  25. Donadon V, Balbi M, Ghersetti M, Grazioli S, Perciaccante A, Della Valentina G, et al. Antidiabetic therapy and increased risk of hepatocellular carcinoma in chronic liver disease. World J Gastroenterol. 2009;15:2506–11.

    Article  PubMed  CAS  Google Scholar 

  26. Lebovitz HE. Insulin secretagogues: old and new. Diabetes Rev. 1999;7:139–53.

    Google Scholar 

  27. Stock MJ. An automatic, closed-circuit oxygen consumption apparatus for small animals. J Appl Physiol. 1975;39:849–50.

    PubMed  CAS  Google Scholar 

  28. Abdel-Halim SM, Guenifi A, Khan A, Larsson O, Berggren PO, Ostenson CG, et al. Impaired coupling of glucose signal to the exocytotic machinery in diabetic GK rats: a defect ameliorated by cAMP. Diabetes. 1996;45:934–40.

    Article  PubMed  Google Scholar 

  29. Kulkarni RN, Jhala US, Winnay JN, Krajewski S, Montminy M, Kahn CR. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance. J Clin Invest. 2004;114:828–36.

    PubMed  CAS  Google Scholar 

  30. Hui H, Perfetti R. Pancreas duodenum homeobox-1 regulates pancreas development during embryogenesis and islet cell function in adulthood. Eur J Endocrinol. 2002;146:129–41.

    Article  PubMed  CAS  Google Scholar 

  31. Saitoh M. Studies on histopathology of pancreas in portal hypertension. Nippon Shokakibyo Gakkai Zasshi. 1984;81:1444–52.

    PubMed  CAS  Google Scholar 

  32. Nagy I, Hajnal F, Mohacsi G, Nemeth J, Laszik Z, Pap A. Pancreatic trophism in experimental liver cirrhosis. Int J Pancreatol. 1993;14:157–66.

    PubMed  CAS  Google Scholar 

  33. Takei K, Suda K. Study of mechanisms of pancreatic fibrosis and structural changes in liver cirrhotic patients. Nippon Shokakibyo Gakkai Zasshi. 1997;94:92–100.

    PubMed  CAS  Google Scholar 

  34. Bishop AE, Polak JM. The anatomy, organization and ultrastructure of the islets of Langerhans. In: Pickup JC, Williams G, editors. Textbook of diabetes. Oxford: Blackwell Science; 2002.

  35. Kawahara A, Hattori S, Akiba J, Nakashima K, Taira T, Watari K, et al. Infiltration of thymidine phosphorylase-positive macrophages is closely associated with tumor angiogenesis and survival in intestinal type gastric cancer. Oncol Rep. 2010;24:405–15.

    Article  PubMed  CAS  Google Scholar 

  36. Lehr HA, Mankoff DA, Corwin D, Santeusanio G, Gown AM. Application of photoshop-based image analysis to quantification of hormone receptor expression in breast cancer. J Histochem Cytochem. 1997;45:1559–65.

    Article  PubMed  CAS  Google Scholar 

  37. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  PubMed  CAS  Google Scholar 

  38. Bates HE, Sirek A, Kiraly MA, Yue JT, Riddell MC, Matthews SG, et al. Adaptation to intermittent stress promotes maintenance of beta-cell compensation: comparison with food restriction. Am J Physiol Endocrinol Metab. 2008;295:E947–58.

    Article  PubMed  CAS  Google Scholar 

  39. Bonner-Weir S. Islet growth and development in the adult. J Mol Endocrinol. 2000;24:297–302.

    Article  PubMed  CAS  Google Scholar 

  40. Lingohr MK, Buettner R, Rhodes CJ. Pancreatic beta-cell growth and survival—a role in obesity-linked type 2 diabetes? Trends Mol Med. 2002;8:375–84.

    Article  PubMed  CAS  Google Scholar 

  41. Xue Y, Liu C, Xu Y, Yuan Q, Xu K, Mao X, et al. Study on pancreatic islet adaptation and gene expression during pregnancy in rats. Endocrine. 2010;37:83–97.

    Article  PubMed  CAS  Google Scholar 

  42. Finegood DT, McArthur MD, Kojwang D, Thomas MJ, Topp BG, Leonard T, et al. Beta-cell mass dynamics in Zucker diabetic fatty rats. Rosiglitazone prevents the rise in net cell death. Diabetes. 2001;50:1021–9.

    Article  PubMed  CAS  Google Scholar 

  43. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.

    PubMed  CAS  Google Scholar 

  44. Bluher M, Michael MD, Peroni OD, Ueki K, Carter N, Kahn BB, et al. Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell. 2002;3:25–38.

    Article  PubMed  CAS  Google Scholar 

  45. Bruning JC, Michael MD, Winnay JN, Hayashi T, Horsch D, Accili D, et al. A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell. 1998;2:559–69.

    Article  PubMed  CAS  Google Scholar 

  46. Imai J, Katagiri H, Yamada T, Ishigaki Y, Suzuki T, Kudo H, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science. 2008;322:1250–4.

    Article  PubMed  CAS  Google Scholar 

  47. Brown DC, Gatter KC. Ki67 protein: the immaculate deception? Histopathology. 2002;40:2–11.

    Article  PubMed  CAS  Google Scholar 

  48. Duvillie B, Currie C, Chrones T, Bucchini D, Jami J, Joshi RL, et al. Increased islet cell proliferation, decreased apoptosis, and greater vascularization leading to beta-cell hyperplasia in mutant mice lacking insulin. Endocrinology. 2002;143:1530–7.

    Article  PubMed  CAS  Google Scholar 

  49. Brennand K, Huangfu D, Melton D. All beta cells contribute equally to islet growth and maintenance. PLoS Biol. 2007;5:e163.

    Article  PubMed  Google Scholar 

  50. Guz Y, Montminy MR, Stein R, Leonard J, Gamer LW, Wright CV, et al. Expression of murine STF-1, a putative insulin gene transcription factor, in beta cells of pancreas, duodenal epithelium and pancreatic exocrine and endocrine progenitors during ontogeny. Development. 1995;121:11–8.

    PubMed  CAS  Google Scholar 

  51. Kawamori D, Kajimoto Y, Kaneto H, Umayahara Y, Fujitani Y, Miyatsuka T, et al. Oxidative stress induces nucleo-cytoplasmic translocation of pancreatic transcription factor PDX-1 through activation of c-Jun NH(2)-terminal kinase. Diabetes. 2003;52:2896–904.

    Article  PubMed  CAS  Google Scholar 

  52. Marco J, Diego J, Villanueva ML, Diaz-Fierros M, Valverde I, Segovia JM. Elevated plasma glucagon levels in cirrhosis of the liver. N Engl J Med. 1973;289:1107–11.

    Article  PubMed  CAS  Google Scholar 

  53. Gragnoli G, Signorini AM, Tanganelli I. Plasma levels of insulin, C-peptide and glucagon in liver cirrhosis. J Endocrinol Invest. 1981;4:1–5.

    PubMed  CAS  Google Scholar 

  54. Antoniello S, La Rocca S, Cavalcanti E, Auletta M, Salvatore F, Cacciatore L. Insulin and glucagon degradation in liver are not affected by hepatic cirrhosis. Clin Chim Acta. 1989;183:343–50.

    Article  PubMed  CAS  Google Scholar 

  55. Raskin P. Islet-cell abnormalities in non-insulin-dependent diabetes mellitus. Am J Med. 1985;79:2–5.

    Article  PubMed  CAS  Google Scholar 

  56. Iguchi H, Ikeda Y, Okamura M, Tanaka T, Urashima Y, Ohguchi H, et al. SOX6 attenuates glucose-stimulated insulin secretion by repressing PDX1 transcriptional activity and is down-regulated in hyperinsulinemic obese mice. J Biol Chem. 2005;280:37669–80.

    Article  PubMed  CAS  Google Scholar 

  57. Wang H, Zhang W, Cai H, Xu S, Sui W, Jiang Y, et al. Alpha-cell loss from islet impairs its insulin secretion in vitro and in vivo. Islets. 2011;3:58–65.

    Article  PubMed  Google Scholar 

  58. Schauder P, McIntosh C, Arends J, Arnold R, Frerichs H, Creutzfeldt W. Somatostatin and insulin release from isolated rat pancreatic islets stimulated by glucose. FEBS Lett. 1976;68:225–7.

    Article  PubMed  CAS  Google Scholar 

  59. Patel YC, Weir GC. Increased somatostatin content of islets from streptozotocin-diabetic rats. Clin Endocrinol (Oxf). 1976;5:191–4.

    Article  CAS  Google Scholar 

  60. Matsushima Y, Makino H, Kanatsuka A, Yamamoto M, Kumagai A. Immunohistochemical changes of somatostatin cells in the pancreatic islets of rats after streptozotocin administration. Endocrinol Jpn. 1978;25:111–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Young Scientists (B) (No. 19790643 to T.K.) and a Grant-in-Aid for Scientific Research (C) (No. 21590865 to M.S.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by Health and Labour Sciences Research Grants for Research on Hepatitis from the Ministry of Health, Labour and Welfare of Japan, and by a Grant for Cancer Research from Fukuoka Cancer Society.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Sakata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakata, M., Kawahara, A., Kawaguchi, T. et al. Decreased expression of insulin and increased expression of pancreatic transcription factor PDX-1 in islets in patients with liver cirrhosis: a comparative investigation using human autopsy specimens. J Gastroenterol 48, 277–285 (2013). https://doi.org/10.1007/s00535-012-0633-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-012-0633-9

Keywords

Navigation