Skip to main content

Advertisement

Log in

The mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and aminoacidemia

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

SLC25A13 gene mutations cause citrin deficiency, which leads to neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). Information on the mutation spectrum of SLC25A13 in the Chinese population is limited. The aim of this study was to explore the mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and various forms of aminoacidemia.

Methods

Sequence analyses were performed on 39 infants with intrahepatic cholestasis and various forms of aminoacidemia. Novel mutations were subjected to homology and structural analyses. Western blots were performed when liver specimens available.

Results

Genetic testing revealed the presence of SLC25A13 gene mutations (9 heterozygotes, 6 homozygotes and 13 compound heterozygotes) in 28 infants. Subsequent Western blot analysis revealed 22 cases of citrin deficiency, accounting for 56.4% of the 39 patients. Twelve types of mutations, including nine known mutations and three novel mutations, were found. Of the 49 mutated alleles, known ones include 851del4 (26 alleles, 53.1%), 1638ins23 (6 alleles, 12.2%), IVSl6ins3kb (3 alleles, 6.1%), IVS6+5G>A (2 alleles, 4.1%), E601K (2 alleles, 4.1%) and IVS11+1G>A, R184X, R360X and R585H (1 allele each, 2.0%). The three novel mutations were a splice site change (IVS6+1G>A), a deletion mutation (1092_1095delT) and a missense mutation (L85P), each in one allele.

Conclusions

The mutation spectrum of the SLC25A13 gene in a Chinese population of infants with intrahepatic cholestasis with various forms of aminoacidemia was found to be different from that of other population groups in East Asia. The SLC25A13 gene mutation is the most important cause of infantile intrahepatic cholestasis with various forms of aminoacidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kobayashi K, Sinasac DS, Iijima M, Boright AP, Begum L, Lee JR, et al. The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein. Nat Genet. 1999;22:159–63.

    Article  PubMed  CAS  Google Scholar 

  2. Palmieri L, Pardo B, Lasorsa FM, del Arco A, Kobayashi K, Iijima M, et al. Citrin and aralar1 are Ca(2+)-stimulated aspartate/glutamate transporters in mitochondria. EMBO J. 2001;20:5060–9.

    Article  PubMed  CAS  Google Scholar 

  3. Tazawa Y, Kobayashi K, Ohura T, Abukawa D, Nishinomiya F, Hosoda Y, et al. Infantile cholestatic jaundice associated with adult-onset type II citrullinemia. J Pediatr. 2001;138:735–40.

    Article  PubMed  CAS  Google Scholar 

  4. Yamaguchi N, Kobayashi K, Yasuda T, Nishi I, Iijima M, Nakagawa M, et al. Screening of SLC25A13 mutations in early and late onset patients with citrin deficiency and in the Japanese population: identification of two novel mutations and establishment of multiple DNA diagnosis methods for nine mutations. Hum Mutat. 2002;19:122–30.

    Article  PubMed  CAS  Google Scholar 

  5. Tomomasa T, Kobayashi K, Kaneko H, Shimura H, Fukusato T, Tabata M, et al. Possible clinical and histologic manifestations of adult-onset type II citrullinemia in early infancy. J Pediatr. 2001;138:741–3.

    Google Scholar 

  6. Tamamori A, Okano Y, Ozaki H, Fujimoto A, Kajiwara M, Fukuda K, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency: severe hepatic dysfunction in an infant requiring liver transplantation. Eur J Pediatr. 2002;161:609–13.

    Article  PubMed  Google Scholar 

  7. Ohura T, Kobayashi K, Abukawa D, Tazawa Y, Aikawa J, Sakamoto O, et al. A novel inborn error of metabolism detected by elevated methionine and/or galactose in newborn screening: neonatal intrahepatic cholestasis caused by citrin deficiency. Eur J Pediatr. 2003;162:317–22.

    PubMed  CAS  Google Scholar 

  8. Tazawa Y, Kobayashi K, Abukawa D, Nagata I, Maisawa S, Sumazaki R, et al. Clinical heterogeneity of neonatal intrahepatic cholestasis caused by citrin deficiency: case reports from 16 patients. Mol Genet Metab. 2004;83:213–9.

    Article  PubMed  CAS  Google Scholar 

  9. Song YZ, Hao H, Ushikai M, Liu GS, Xiao X, Saheki T, et al. A difficult and complicated case study: neonatal intrahepatic cholestasis caused by citrin deficiency (in Chinese with English abstract). Zhongguo Dang Dai Er Ke Za Zhi. 2006;8:125–8.

    PubMed  CAS  Google Scholar 

  10. Ko JS, Song JH, Park SS, Seo JK. Neonatal intrahepatic cholestasis caused by citrin deficiency in Korean infants. J Korean Med Sci. 2007;22:952–6.

    Article  PubMed  CAS  Google Scholar 

  11. Ohura T, Kobayashi K, Tazawa Y, Abukawa D, Sakamoto O, Tsuchiya S, et al. Clinical pictures of 75 patients with neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD). J Inherit Metab Dis. 2007;30:139–44.

    Article  PubMed  CAS  Google Scholar 

  12. Dimmock D, Maranda B, Dionisi-Vici C, Wang J, Kleppe S, Fiermonte G, et al. Citrin deficiency, a perplexing global disorder. Mol Genet Metab. 2009;96:44–9.

    Article  PubMed  CAS  Google Scholar 

  13. Song YZ, Li BX, Chen FP, Liu SR, Sheng JS, Ushikai M, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency: clinical and laboratory investigation of 13 subjects in mainland of China. Dig Liver Dis. 2009;41:683–9.

    Article  PubMed  CAS  Google Scholar 

  14. Shigeta T, Kasahara M, Kimura T, Fukuda A, Sasaki K, Arai K, et al. Liver transplantation for an infant with neonatal intrahepatic cholestasis caused by citrin deficiency using heterozygote living donor. Pediatr Transplant. doi: 10.1111/j.1399-3046.2009.01172.x.

  15. Yazaki M, Takei Y, Kobayashi K, Saheki T, Ikeda S. Risk of worsened encephalopathy after intravenous glycerol therapy in patients with adult-onset type II citrullinemia (CTLN2). Intern Med. 2005;44:188–95.

    Article  PubMed  CAS  Google Scholar 

  16. Saheki T, Kobayashi K, Terashi M, Ohura T, Yanagawa Y, Okano Y, et al. Reduced carbohydrate intake in citrin-deficient subjects. J Inherit Metab Dis. 2008;31(3):386–94.

    Article  PubMed  CAS  Google Scholar 

  17. Sinasac DS, Crackower MA, Lee JR, Kobayashi K, Saheki T, Scherer SW, Tsuiet L-C. Genomic structure of the adult-onset type II citrullinemia gene, SLC25A13, and cloning and expression of its mouse homologue. Genomics 62:289–92.

  18. Kobayashi K, Ushikai M, Song Y, Gao H, Sheng J, Tabata A, et al. Overview of citrin deficiency: SLC25A13 mutations and the frequency. J Appl Clin Pediatr. 2008;23:1553–7.

    Google Scholar 

  19. Ohura T, Kobayashi K, Tazawa Y, Nishi I, Abukawa D, Sakamoto O, et al. Neonatal presentation of adult-onset type II citrullinemia. Hum Genet. 2001;108:87–90.

    Article  PubMed  CAS  Google Scholar 

  20. Ben-Shalom E, Kobayashi K, Shaag A, Yasuda T, Gao HZ, Saheki T, et al. Infantile citrullinemia caused by citrin deficiency with increased dibasic amino acids. Mol Genet Metab. 2002;77:202–8.

    Article  PubMed  CAS  Google Scholar 

  21. Luder AS, Tabata A, Iijima M, Kobayashi K, Mandel H. Citrullinaemia type 2 outside East Asia-Israeli experience. J Inherit Metab Dis. 2006;29:59.

    Google Scholar 

  22. Dimmock D, Kobayashi K, Iijima M, Tabata A, Wong LJ, Saheki T, et al. Citrin deficiency: a novel cause of failure to thrive that responds to a high-protein, low-carbohydrate diet. Pediatrics. 2007;119:773–7.

    Article  Google Scholar 

  23. Tabata A, Sheng JS, Ushikai M, Song YZ, Gao HZ, Lu YB, et al. Identification of 13 novel mutations including a retrotransposal insertion in SLC25A13 gene and frequency of 30 mutations found in patients with citrin deficiency. J Hum Genet. 2008;53:534–45.

    Article  PubMed  CAS  Google Scholar 

  24. Hutchin T, Preece MA, Hendriksz C, Chakrapani A, McClelland V, Okumura F, et al. Neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) as a cause of liver disease in infants in the UK. J Inherit Metab Dis. doi:10.1007/s10545-009-1116-x

  25. Lu YB, Kobayashi K, Ushikai M, Tabata A, Iijima M, Li MX, et al. Frequency and distribution in East Asia of 12 mutations identified in the SLC25A13 gene of Japanese patients with citrin deficiency. J Hum Genet. 2005;50:338–46.

    Article  PubMed  CAS  Google Scholar 

  26. Yeh JN, Jeng YM, Chen HL, Ni YH, Hwu WL, Chang MH. Hepatic steatosis and neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD) in Taiwanese infants. J Pediatr. 2006;148:642–6.

    Article  PubMed  Google Scholar 

  27. Song YZ, Sheng JS, Ushikai M, Hwu WL, Zhang CH, Kobayashi K. Identification and diagnosis of three novel mutations in SLC25A13 gene of neonatal intrahepatic cholestasis caused by citrin deficiency (in Chinese with English abstract). Zhonghua Er Ke Za Zhi. 2008;46:411–5.

    PubMed  Google Scholar 

  28. Liu LY, Wang XH, Wang ZL, Zhu QR, Wang JS. Characterization of ATP8B1 gene mutations and a hot-linked mutation found in Chinese with progressive intrahepatic cholestasis and low GGT. J Pediatr Gastroenterol Nutr. 2010;50(2):179–83. doi:10.1097/MPG.0b013e3181c1b368.

    Google Scholar 

  29. Liu LY, Wang ZL, Wang XH, Zhu QR, Wang JS. ABCB11 gene mutations in Chinese children with progressive intrahepatic cholestasis and low γ glutamyltransferase. Liver Int. 2010;30(6):809–15. doi:10.1111/j.1478-3231.2009.02112.x.

  30. Chang MH, Hsu HC, Lee CY, Wang TR, Kao CL. Neonatal hepatitis: a follow-up study. J Pediatr Gastroenterol Nutr. 1987;6:203–7.

    Article  PubMed  CAS  Google Scholar 

  31. Wang JS, Wang ZL, Wang XH, Zhu QR, Zheng S. The prognostic value of serum gamma glutamyltransferase activity in Chinese infants with previously diagnosed idiopathic neonatal hepatitis HK. J Paediatr. 2008;13:39–45.

    Google Scholar 

  32. Takaya J, Kobayashi K, Ohashi A, Ushikai M, Tabata A, Fujimoto S, et al. Variant clinical courses of 2 patients with neonatal intrahepatic cholestasis who have a novel mutation of SLC25A13. Metabolism. 2005;54:1615–9.

    Article  PubMed  CAS  Google Scholar 

  33. Ramensky V, Bork P, Sunyaev S. Human non-synonymous SNPs: server and survey. Nucleic Acids Res. 2002;30:3894–900.

    Article  PubMed  CAS  Google Scholar 

  34. Yasuda T, Yamaguchi N, Kobayashi K, Nishi I, Horinouchi H, Jalil MA, et al. Identification of two novel mutations in the SLC25A13 gene and detection of seven mutations in 102 patients with adult-onset type II citrullinemia. Hum Genet. 2000;107:537–45.

    Article  PubMed  CAS  Google Scholar 

  35. Song YZ, Ushikai M, Sheng JS, Iijima M, Kobayashi K. SLC25A13 gene mutation analysis in a pedigree of neonatal intrahepatic cholestasis caused by citrin deficiency. Zhonghua Er Ke Za Zhi. 2007;45:408–12.

    PubMed  Google Scholar 

  36. Naito E, Ito M, Matsuura S, Yokota IE, Saijo T, Ogawa Y, et al. Type II citrullinaemia (citrin deficiency) in a neonate with hypergalactosaemia detected by mass screening. J Inherit Metab Dis. 2002;25:71–6.

    Article  PubMed  CAS  Google Scholar 

  37. Kobayashi K, Bang LY, Xian LM, Nishi I, Hsiao KJ, Choeh K, et al. Screening of nine SLC25A13 mutations: their frequency in patients with citrin deficiency and high carrier rates in Asian populations. Mol Genet Metab. 2003;80:356–9.

    Article  PubMed  CAS  Google Scholar 

  38. Tamamori A, Fujimoto A, Okano Y, Kobayashi K, Saheki T, Tagami Y, et al. Effects of citrin deficiency in the perinatal period: feasibility of newborn mass screening for citrin deficiency. Pediatr Res. 2004;56:608–14.

    Article  PubMed  CAS  Google Scholar 

  39. Hachisu M, Oda Y, Goto M, Kobayashi K, Saheki T, Ohura T, et al. Citrin deficiency presenting with ketotic hypoglycaemia and hepatomegaly in childhood. Eur J Pediatr. 2005;164:109–10.

    Article  PubMed  Google Scholar 

  40. Feillet F, Merten M, Battaglia-Hsu SF, Rabier D, Kobayashi K, Straczek J, et al. Evidence of cataplerosis in a patient with neonatal classical galactosemia presenting as citrin deficiency. J Hepatol. 2008;48:517–22.

    Article  PubMed  Google Scholar 

  41. Tokuhara D, Iijima M, Tamamori A, Ohura T, Takaya J, Maisawa S, et al. Novel diagnostic approach to citrin deficiency: analysis of citrin protein in lymphocytes. Mol Genet Metab. 2007;90(1):30–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank MSc Ms. LJ Fang and R Chen for carrying out the mutation test for IVSl6ins3kb, and Prof. YK Leung for the revision and editing of the manuscript. We also thank the patients and their parents for their kind cooperation as well as the physicians who referred the patients. This paper was partly supported by two grants (Nos. 30672257 and 30973230) from the National Natural Science Foundation of China and a grant for Shanghai Public Health Key Subject Construction (08GWZX0102), and was supported in part by a Grant for Asia-Africa Scientific Platform Program from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-She Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 45 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, HY., Zhang, SR., Wang, XH. et al. The mutation spectrum of the SLC25A13 gene in Chinese infants with intrahepatic cholestasis and aminoacidemia. J Gastroenterol 46, 510–518 (2011). https://doi.org/10.1007/s00535-010-0329-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0329-y

Keywords

Navigation