Skip to main content

Advertisement

Log in

Lymphotropic HCV strain can infect human primary naïve CD4+ cells and affect their proliferation and IFN-γ secretion activity

  • Original Article—Liver, Pancreas, and Biliary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Lymphotropic hepatitis C virus (HCV) infection of B and T cells might play an important role in the pathogenesis of hepatitis C. Recently, we showed that a lymphotropic HCV (SB strain) could infect established T-cell lines and B-cell lines. However, whether HCV replication interferes with cell proliferation and function in primary T lymphocytes is still unclear.

Aim

The aim of this study was to analyze whether HCV replication in primary T lymphocytes affected their development, proliferation, and Th1 commitment.

Methods

SB strain cell culture supernatant (2 × 104 copies/ml HCV) was used to infect several kinds of primary lymphocyte subsets. Mock, UV-irradiated SB-HCV, JFH-1 strain, and JFH-1 NS5B mutant, which could not replicate in T cells, were included as negative controls. Carboxyfluorescein succinimidyl ester (CFSE) and CD45RA double staining was used to evaluate the proliferative activity of CD4+CD45RA+CD45RO naïve CD4+ cells. Interferon (IFN)-γ and interleukin (IL)-10 secretion assays magnetic cell sorting (MACS) were carried out.

Results

Negative strand HCV RNA was detected in CD4+, CD14+, and CD19+ cells. Among CD4+ cells, CD4+CD45RA+RO cells (naïve CD4+ cells) were most susceptible to replication of the SB strain. The levels of CFSE and CD45RA expression gradually declined during cell division in uninfected cells, while HCV-infected naïve CD4+ cells expressed higher levels of CFSE and CD45RA than Mock or UV-SB infected naïve CD4+ cells. Moreover, the production of IFN-γ was significantly suppressed in SB-infected naïve CD4+ cells.

Conclusions

Lymphotropic HCV replication suppressed proliferation and development, including that towards Th1 commitment, in human primary naïve CD4+ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alter MJ, Kruszon-Moran D, Nainan OV, McQuillan GM, Gao F, Moyer LA, et al. The prevalence of hepatitis C virus infection in the United States, 1988 through 1994. N Engl J Med. 1999;341(8):556–62.

    Article  CAS  PubMed  Google Scholar 

  2. Chang KM, Rehermann B, Chisari FV. Immunopathology of hepatitis C. Springer Semin Immunopathol. 1997;19(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  3. Ferri C, Caracciolo F, Zignego AL, La Civita L, Monti M, Longombardo G, et al. Hepatitis C virus infection in patients with non-Hodgkin’s lymphoma. Br J Haematol. 1994;88(2):392–4.

    Article  CAS  PubMed  Google Scholar 

  4. Accapezzato D, Francavilla V, Paroli M, Casciaro M, Chircu LV, Cividini A, et al. Hepatic expansion of a virus-specific regulatory CD8(+) T cell population in chronic hepatitis C virus infection. J Clin Invest. 2004;113(7):963–72.

    CAS  PubMed  Google Scholar 

  5. Manigold T, Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: facts and controversies. Lancet Infect Dis. 2007;7(12):804–13.

    Article  CAS  PubMed  Google Scholar 

  6. Blackburn SD, Wherry EJ. IL-10, T cell exhaustion and viral persistence. Trends Microbiol. 2007;15(4):143–6.

    Article  CAS  PubMed  Google Scholar 

  7. Yao ZQ, Prayther D, Trabue C, Dong ZP, Moorman J. Differential regulation of SOCS-1 signalling in B and T lymphocytes by hepatitis C virus core protein. Immunology. 2008;125(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  8. Bare P, Massud I, Parodi C, Belmonte L, Garcia G, Nebel MC, et al. Continuous release of hepatitis C virus (HCV) by peripheral blood mononuclear cells and B-lymphoblastoid cell-line cultures derived from HCV-infected patients. J Gen Virol. 2005;86(Pt 6):1717–27.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Shahidi A, Park S, Guilfoyle D, Hirshfield I. Detection of extrahepatic hepatitis C virus replication by a novel, highly sensitive, single-tube nested polymerase chain reaction. Am J Clin Pathol. 2003;119(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  10. Laporte J, Bain C, Maurel P, Inchauspe G, Agut H, Cahour A. Differential distribution and internal translation efficiency of hepatitis C virus quasi species present in dendritic and liver cells. Blood. 2003;101(1):52–7.

    Article  CAS  PubMed  Google Scholar 

  11. Li Y, Wang X, Douglas SD, Metzger DS, Woody G, Zhang T, et al. CD8+ T cell depletion amplifies hepatitis C virus replication in peripheral blood mononuclear cells. J Infect Dis. 2005;192(6):1093–101.

    Article  CAS  PubMed  Google Scholar 

  12. Sung VM, Shimodaira S, Doughty AL, Picchio GR, Can H, Yen TS, et al. Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J Virol. 2003;77(3):2134–46.

    Article  CAS  PubMed  Google Scholar 

  13. Kondo Y, Sung VM, Machida K, Liu M, Lai MM. Hepatitis C virus infects T cells and affects interferon-gamma signaling in T cell lines. Virology. 2007;361(1):161–73.

    Article  CAS  PubMed  Google Scholar 

  14. Kondo Y, Machida K, Liu HM, Ueno Y, Kobayashi K, Wakita T, et al. Hepatitis C virus infection of T cells inhibits proliferation and enhances fas-mediated apoptosis by down-regulating the expression of CD44 splicing variant 6. J Infect Dis. 2009;199(5):726–36.

    Article  CAS  PubMed  Google Scholar 

  15. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC, et al. Complete replication of hepatitis C virus in cell culture. Science. 2005;309(5734):623–6.

    Article  CAS  PubMed  Google Scholar 

  16. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, et al. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med. 2005;11(7):791–6.

    Article  CAS  PubMed  Google Scholar 

  17. Kato T, Date T, Murayama A, Morikawa K, Akazawa D, Wakita T. Cell culture and infection system for hepatitis C virus. Nat Protoc. 2006;1(5):2334–9.

    Article  CAS  PubMed  Google Scholar 

  18. Negro F, Krawczynski K, Quadri R, Rubbia-Brandt L, Mondelli M, Zarski JP, et al. Detection of genomic- and minus-strand of hepatitis C virus RNA in the liver of chronic hepatitis C patients by strand-specific semiquantitative reverse-transcriptase polymerase chain reaction. Hepatology. 1999;29(2):536–42.

    Article  CAS  PubMed  Google Scholar 

  19. Machida K, Cheng KT, Sung VM, Lee KJ, Levine AM, Lai MM. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol. 2004;78(16):8835–43.

    Article  CAS  PubMed  Google Scholar 

  20. Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, et al. CD81 and claudin 1 coreceptor association: role in hepatitis C virus entry. J Virol. 2008;82(10):5007–20.

    Article  CAS  PubMed  Google Scholar 

  21. Molina S, Castet V, Pichard-Garcia L, Wychowski C, Meurs E, Pascussi JM, et al. Serum-derived hepatitis C virus infection of primary human hepatocytes is tetraspanin CD81 dependent. J Virol. 2008;82(1):569–74.

    Article  CAS  PubMed  Google Scholar 

  22. Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T. CD81 is an entry coreceptor for hepatitis C virus. Proc Natl Acad Sci USA. 2004;101(19):7270–4.

    Article  CAS  PubMed  Google Scholar 

  23. Kanto T, Inoue M, Miyatake H, Sato A, Sakakibara M, Yakushijin T, et al. Reduced numbers and impaired ability of myeloid and plasmacytoid dendritic cells to polarize T helper cells in chronic hepatitis C virus infection. J Infect Dis. 2004;190(11):1919–26.

    Article  PubMed  Google Scholar 

  24. Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N, Ito A, et al. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J Immunol. 1999;162(9):5584–91.

    CAS  PubMed  Google Scholar 

  25. Machida K, Kondo Y, Huang JY, Chen YC, Cheng KT, Keck Z, et al. Hepatitis C virus (HCV)-induced immunoglobulin hypermutation reduces the affinity and neutralizing activities of antibodies against HCV envelope protein. J Virol. 2008;82(13):6711–20.

    Article  CAS  PubMed  Google Scholar 

  26. Lin W, Choe WH, Hiasa Y, Kamegaya Y, Blackard JT, Schmidt EV, et al. Hepatitis C virus expression suppresses interferon signaling by degrading STAT1. Gastroenterology. 2005;128(4):1034–41.

    Article  CAS  PubMed  Google Scholar 

  27. Kanda T, Steele R, Ray R, Ray RB. Inhibition of intrahepatic gamma interferon production by hepatitis C virus nonstructural protein 5A in transgenic mice. J Virol. 2009;83(17):8463–9.

    Article  CAS  PubMed  Google Scholar 

  28. Pal S, Sullivan DG, Kim S, Lai KK, Kae J, Cotler SJ, et al. Productive replication of hepatitis C virus in perihepatic lymph nodes in vivo: implications of HCV lymphotropism. Gastroenterology. 2006;130(4):1107–16.

    Article  PubMed  Google Scholar 

  29. Krammer PH. CD95’s deadly mission in the immune system. Nature. 2000;407(6805):789–95.

    Article  CAS  PubMed  Google Scholar 

  30. Holmstrom TH, Schmitz I, Soderstrom TS, Poukkula M, Johnson VL, Chow SC, et al. MAPK/ERK signaling in activated T cells inhibits CD95/Fas-mediated apoptosis downstream of DISC assembly. EMBO J. 2000;19(20):5418–28.

    Article  CAS  PubMed  Google Scholar 

  31. Nanda SK, Herion D, Liang TJ. The SH3 binding motif of HCV [corrected] NS5A protein interacts with Bin1 and is important for apoptosis and infectivity. Gastroenterology. 2006;130(3):794–809.

    Article  CAS  PubMed  Google Scholar 

  32. Miyasaka Y, Enomoto N, Kurosaki M, Sakamoto N, Kanazawa N, Kohashi T, et al. Hepatitis C virus nonstructural protein 5A inhibits tumor necrosis factor-alpha-mediated apoptosis in Huh7 cells. J Infect Dis. 2003;188(10):1537–44.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sport, Science, and Technology of Japan (#21790642 to Y.K.), and by Health and Labour Sciences Research Grants for Research on Measures for Intractable Diseases (from the Ministry of Health, Labour and Welfare of Japan (to Y.U.). We are grateful to Dr. Michael M.C. Lai for providing the SB-HCV strain, and to Dr. Takaji Wakita for providing pJFH-1 and pJFH-1/GND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Ueno.

Electronic supplementary material

Below is the link to the electronic supplementary material.

535_2010_297_MOESM1_ESM.ppt

Suppl. Fig. 1 HCV infection of primary naïve CD4+ cells. Representative gels shows the semiquantitative detection of negative strand HCV-RNA in CD45RA+RO naïve CD4+ cells 2 days and 7 days after infection. (PPT 128 kb)

535_2010_297_MOESM2_ESM.ppt

Suppl. Fig. 2 Infectivity of SB-HCV in the naïve CD4+ cells. The percentage of NS5A expressing cells was determined by counting the numbers of positive stained cells in 400 cells. As a negative control, cells treated with UV-irradiated HCV were used. (PPT 1069 kb)

535_2010_297_MOESM3_ESM.ppt

Suppl. Fig. 3 The expression levels of HCV individual proteins and transfection efficiencies. The expression levels of HCV individual proteins were shown in these histograms. The numbers in these histograms indicate the percentage of proteins-positive cells. (PPT 488 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kondo, Y., Ueno, Y., Kakazu, E. et al. Lymphotropic HCV strain can infect human primary naïve CD4+ cells and affect their proliferation and IFN-γ secretion activity. J Gastroenterol 46, 232–241 (2011). https://doi.org/10.1007/s00535-010-0297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-010-0297-2

Keywords

Navigation