Skip to main content

Advertisement

Log in

Increased expression of miR-421 in human gastric carcinoma and its clinical association

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Gastric cancer is a worldwide cancer with poor prognosis. Identification of diagnostic biomarkers and effective therapeutic targets is important in the treatment and diagnosis of gastric cancer. Recently, researchers have found that microRNAs play several important roles in carcinogenesis. The purpose of this study was to investigate the relationships between miR-421 expression patterns in human gastric cancer tissues with clinicopathological features.

Methods

Sixty gastric carcinoma and 18 non-tumor tissues were collected from the Secondary Hospital of Ningbo, China. For quantitative detection of the expression level of miR-421, total RNA was extracted and then reverse transcription-polymerase chain reaction was performed. The relationship between miR-421 expression in gastric cancer and clinicopathological features was analyzed. After miR-421 inhibitor was transfected into gastric cancer cells, cell growth was measured by MTT assay. Finally, the expression of its target genes was detected by Western blotting.

Results

The miR-421 was over-expressed in 73.33% (44/60) of the gastric cancer samples examined. Over-expression of miR-421 in gastric cancer tissues was not found associated with clinicopathological features. The positive detection rate of miR-421 was higher than that of serum carcino-embryonic antigen (χ2 = 39.811, P < 0.001). Inhibition of miR-421 expression decreased the growth of both MGC-803 and SGC-7901 gastric cancer cells in vitro, with up-regulating the expression of its cancer-related target genes, CBX7 and RBMXL1.

Conclusions

miR-421 may involve in the early stage of stomach carcinogenesis and could be used as an efficient diagnostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  2. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM. Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulated the proapoptotic gene hid in Drosophila. Cell. 2003;113:25–36.

    Article  CAS  PubMed  Google Scholar 

  3. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005;65:6029–33.

    Article  CAS  PubMed  Google Scholar 

  4. Xu P, Vernooy SY, Guo M, Hay BA. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol. 2003;13:790–5.

    Article  CAS  PubMed  Google Scholar 

  5. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–54.

    Article  CAS  PubMed  Google Scholar 

  6. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–62.

    Article  CAS  PubMed  Google Scholar 

  7. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  CAS  PubMed  Google Scholar 

  8. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  9. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  10. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99:15524–9.

    Article  CAS  PubMed  Google Scholar 

  11. Guo JM, Miao Y, Xiao BX, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24:652–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sobin LH, Wittekind CH. TNM classification of malignant tumors. 5th ed. New York: Wiley; 1997. p. 59–62.

    Google Scholar 

  13. Solcia E, Capella C. Endocrine tumours of the gastrointestinal tract. In: Solcia E, Klöppel G, Sobin LH, editors. Histological typing of endocrine tumours. 2nd ed. Berlin: Springer; 2000. p. 61–8.

    Google Scholar 

  14. Xiao B, Guo J, Miao Y, Jiang Z, Huan R, Zhang Y, et al. Detection of miR-106a in gastric carcinoma and its clinical significance. Clin Chim Acta. 2009;400:97–102.

    Article  CAS  PubMed  Google Scholar 

  15. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141:672–5.

    Article  PubMed  Google Scholar 

  16. Peng JJ, Cai SJ, Lu HF, Cai GX, Lian P, Guan ZQ, et al. Predicting prognosis of rectal cancer patients with total mesorectal excision using molecular markers. World J Gastroenterol. 2007;13:3009–15.

    PubMed  Google Scholar 

  17. Cummins JM, He Y, Leary RJ, Pushkaran B, Liggins AP, Pulford Kl, et al. The colorectal microRNAome. Proc Natl Acad Sci USA. 2006;103:3687–92.

    Article  CAS  PubMed  Google Scholar 

  18. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007;129:1401–14.

    Article  CAS  PubMed  Google Scholar 

  19. Cui XY, Guo YJ, Yao HR. Analysis of microRNA in drug-resistant breast cancer cell line MCF-7/ADR. Nan Fang Yi Ke Da Xue Xue Bao. 2008;28:1813–5.

    CAS  PubMed  Google Scholar 

  20. Takahashi Y, Takeuchi T, Sakamoto J, Touge T, Mai M, Ohkura H, et al. The usefulness of CEA and/or CA19-9 in monitoring for recurrence in gastric cancer patients: a prospective clinical study. Gastric Cancer. 2003;6:142–5.

    Article  PubMed  Google Scholar 

  21. Scott CL, Gil J, Hernando E, ewer A, Iovino N, Aravin A, et al. Role of the chromobox protein CBX7 in lymphomagenesis. Proc Natl Acad Sci USA. 2007;104:5389–94.

    Article  CAS  PubMed  Google Scholar 

  22. Bernard D, Martinez-Leal JF, Rizzo S, Martinez D, Hudson D, Visakorpi T, et al. CBX7 controls the growth of normal and tumor-derived prostate cells by repressing the Ink4a/Arf locus. Oncogene. 2005;24:5543–51.

    Article  CAS  PubMed  Google Scholar 

  23. Chao TF, Zhang Y, Yan XQ, Yin B, Gong Y-H, Yuan J-G, et al. MiR-9 regulates the expression of CBX7 in human glioma. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30:268–74.

    CAS  PubMed  Google Scholar 

  24. Hinz S, Kempkensteffen C, Christoph F, Yin B, Gong Y-H, Yuan J-G, et al. Expression parameters of the polycomb group proteins BMI1, SUZ12, RING1 and CBX7 in urothelial carcinoma of the bladder and their prognostic relevance. Tumour Biol. 2008;29:323–9.

    Article  CAS  PubMed  Google Scholar 

  25. Allante P, Federico A, Berlingieri MT, Bianco M, Ferraro A, Forzati F, et al. Loss of the CBX7 gene expression correlates with a highly malignant phenotype in thyroid cancer. Cancer Res. 2008;68:6770–8.

    Article  Google Scholar 

  26. Martínez-Arribas F, Agudo D, Pollán M, Gómez-Esquer F, Díaz-Gil G, Lucas R, et al. Positive correlation between the expression of X-chromosome RBM genes (RBMX, RBM3, RBM10) and the proapoptotic Bax gene in human breast cancer. J Cell Biochem. 2006;97:1275–82.

    Article  PubMed  Google Scholar 

  27. Su JL, Yang CY, Shih JY, Wei LH, Hsieh CY, Jeng YN, et al. Knockdown of contactin-1 expression suppresses invasion and metastasis of lung adenocarcinoma. Cancer Res. 2006;66:2553–61.

    Article  CAS  PubMed  Google Scholar 

  28. Eckerich C, Zapf S, Ulbricht U, Muller S, Fillbrandt R, Westphal M, et al. Contactin is expressed in human astrocytic gliomas and mediates repulsive effects. Glia. 2006;53:1–12.

    Article  PubMed  Google Scholar 

  29. Uemura N, Okamoto S, Yamamoto S, Matsumura N, Yamaguchi S, Yamakido M, et al. Helicobacter pylori infection and the development of gastric cancer. N Engl J Med. 2001;345:784–9.

    Article  CAS  PubMed  Google Scholar 

  30. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ningbo Natural Science Foundation (No. 200901A6010024), Zhejiang Provincial Research Project (Nos. 2008C33020 and 2008F70052), Zhejiang Natural Sciences Foundation (Nos. Y207240 and Y207244), Scientific Research Fund of Zhejiang Provincial Education Department (No. 20070965), National Natural Science Foundation of China (No. 30872420), Post-graduate Innovative Research Project in Zhejiang Province (No. YK2008046), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junming Guo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Z., Guo, J., Xiao, B. et al. Increased expression of miR-421 in human gastric carcinoma and its clinical association. J Gastroenterol 45, 17–23 (2010). https://doi.org/10.1007/s00535-009-0135-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0135-6

Keywords

Navigation