Skip to main content

Advertisement

Log in

Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients

  • Original Article—Alimentary Tract
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Background

Trimethylation of histone H3 lysine 27 (H3K27me3) is a posttranslational modification that is highly correlated with genomic silencing. In gastric cancer (GC), global and gene-specific DNA methylation changes have been demonstrated to occur. However, to date, our understanding of the alterations in H3K27me3 in GC is incomplete. This study aimed to investigate the variations in H3K27me3 in CpG island regions between gastric cancerous and matched non-cancerous tissues.

Methods

H3K27me3 variations were analyzed in eight pairs of GC and adjacent normal tissues, from eight GC patients, using a chromatin immunoprecipitation linked to the microarray (ChIP-chip) approach. ChIP–real time PCR was used to validate the microrray results. In addition, DNA methylation status also was further analyzed by methyl-DNA immunoprecipitation quantitative PCR.

Results

One hundred twenty-eight (119 increased and 9 decreased H3K27me3) genes displaying significant H3K27me3 differences were found between GC and adjacent normal tissues. The results of ChIP–real time PCR coincided well with those of microarray. Aberrant DNA methylation can also be found on selected randomly positive genes (MMP15, UNC5B, SHH, AFF3, and RB1).

Conclusion

Our study indicates that there are significant alterations of H3K27me3 in gastric cancerous tissues, which may help clarify the molecular mechanisms involved in the pathogenesis of GC. Such novel findings show the significance of H3K27me3 as a potential biomarker or promising target for epigenetic-based GC therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin. 2005;55:74–108.

    Article  PubMed  Google Scholar 

  2. Xie HL, Su Q, He XS, Liang XQ, Zhou JG, Song Y, et al. Expression of p21(WAF1) and p53 and polymorphism of p21(WAF1) gene in gastric carcinoma. World J Gastroenterol. 2004;10:1125–31.

    PubMed  CAS  Google Scholar 

  3. Sun XD, Mu R, Zhou YS, Dai XD, Zhang SW, Huangfu XM, et al. Analysis of mortality rate of stomach cancer and its trend in 20 years in China. Zhonghua Zhong Liu Za Zhi. 2004;26:4–9.

    PubMed  CAS  Google Scholar 

  4. Yasui W, Oue N, Aung PP, Matsumura S, Shutoh M, Nakayama H. Molecular-pathological prognostic factors of gastric cancer: a review. Gastric Cancer. 2005;8:86–94.

    Article  PubMed  CAS  Google Scholar 

  5. Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol. 2005;6:838–49.

    Article  PubMed  CAS  Google Scholar 

  6. Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003;23:206–15.

    Article  PubMed  CAS  Google Scholar 

  7. Bannister AJ, Kouzarides T. Histone methylation: recognizing the methyl mark. Methods Enzymol. 2004;376:269–88.

    Article  PubMed  CAS  Google Scholar 

  8. Klose RG, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007;8:307–18.

    Article  PubMed  CAS  Google Scholar 

  9. Dutnall RN. Cracking the histone code: one, two, three methyls, you’re out!. Mol Cell. 2003;12:3–4.

    Article  PubMed  CAS  Google Scholar 

  10. Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6:846–56.

    Article  PubMed  CAS  Google Scholar 

  11. Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, et al. Role of histone H3 lysine 27 methylation in X inactivation. Science. 2003;300:131–5.

    Article  PubMed  CAS  Google Scholar 

  12. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16:2893–905.

    Article  PubMed  CAS  Google Scholar 

  13. Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002;298:1039–43.

    Article  PubMed  CAS  Google Scholar 

  14. Cao R, Zhang Y. The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 2004;14:155–64.

    Article  PubMed  CAS  Google Scholar 

  15. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, et al. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129:823–37.

    Article  PubMed  CAS  Google Scholar 

  16. Wu J, Smith LT, Plass C, Huang TH. ChIP-chip comes of age for genome-wide functional analysis. Cancer Res. 2006;66:6899–902.

    Article  PubMed  CAS  Google Scholar 

  17. Wu J, Wang SH, Potter D, Liu JC, Smith LT, Wu YZ, et al. Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics. 2007;8:131.

    Article  PubMed  Google Scholar 

  18. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, et al. Genome-wide location and function of DNA binding proteins. Science. 2000;290:2306–9.

    Article  PubMed  CAS  Google Scholar 

  19. Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 2002;16:235–44.

    Article  PubMed  CAS  Google Scholar 

  20. Miao F, Wu X, Zhang L, Yuan YC, Riggs AD, Natarajan R. Genome-wide analysis of histone lysine methylation variations caused by diabetic conditions in human monocytes. J Biol Chem. 2007;282:13854–63.

    Article  PubMed  CAS  Google Scholar 

  21. Kondo Y, Shen L, Yan PS, Huang TH, Issa JP. Chromatin immunoprecipitation microarrays for identification of genes silenced by histone H3 lysine 9 methylation. Proc Natl Acad Sci. 2004;101:7398–403.

    Article  PubMed  CAS  Google Scholar 

  22. Kondo Y, Shen L, Cheng AS, Ahmed S, Boumber Y, Charo C, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008;40:741–50.

    Article  PubMed  CAS  Google Scholar 

  23. Park YS, Jin MY, Kim YJ, Yook JH, Kim BS, Jang SJ. The global histone modification pattern correlates with cancer recurrence and overall survival in gastric adenocarcinoma. Ann Surg Oncol. 2008;15:1968–76.

    Article  PubMed  Google Scholar 

  24. Meng CF, Zhu XJ, Peng G, Dai DQ. Re-expression of methylation-induced tumor suppressor gene silencing is associated with the state of histone modification in gastric cancer cell lines. World J Gastroenterol. 2007;13:6166–71.

    Article  PubMed  CAS  Google Scholar 

  25. Kim M, Jang HR, Kim JH, Noh SM, Song KS, Cho JS, et al. Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion. Carcinogenesis. 2008;29:629–37.

    Article  PubMed  CAS  Google Scholar 

  26. Jung Y, Park J, Bang YJ, Kim TY. Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers. Lab Invest. 2008;88:153–60.

    Article  PubMed  CAS  Google Scholar 

  27. Huebert DJ, Kamal M, O’Donovan A, Bernstein BE. Genome-wide analysis of histone modifications by ChIP-on-chip. Methods. 2006;40:365–9.

    Article  PubMed  CAS  Google Scholar 

  28. Miao F, Natarajan R. Mapping global histone methylation patterns in the coding regions of human genes. Mol Cell Biol. 2005;25:4650–61.

    Article  PubMed  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−△△CT method. Methods. 2001;25:402–8.

    Article  PubMed  CAS  Google Scholar 

  30. Jenuwein T, Allis CD. Translating the histone code. Science. 2001;293:1074–80.

    Article  PubMed  CAS  Google Scholar 

  31. Jung M, Römer A, Keyszer G, Lein M, Kristiansen G, Schnorr D, et al. mRNA expression of the five membrane-type matrix metalloproteinases MT1-MT5 in human prostatic cell lines and their down-regulation in human malignant prostatic tissue. Prostate. 2003;55:89–98.

    Article  PubMed  CAS  Google Scholar 

  32. Thiebault K, Mazelin L, Pays L, Llambi F, Joly MO, Saurin JC, et al. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Proc Natl Acad Sci. 2003;100:4173–8.

    Article  PubMed  CAS  Google Scholar 

  33. Llambi F, Lourenço FC, Gozuacik D, Guix C, Pays L, Del Rio G, et al. The dependence receptor UNC5H2 mediates apoptosis through DAP-kinase. EMBO J. 2005;24:1192–201.

    Article  PubMed  CAS  Google Scholar 

  34. Tanikawa C, Matsuda K, Fukuda S, Nakamura Y, Arakawa H. p53RDL1 regulates p53-dependent apoptosis. Nat Cell Biol. 2003;5:216–23.

    Article  PubMed  CAS  Google Scholar 

  35. Lee SY, Han HS, Lee KY, Hwang TS, Kim JH, Sung IK, et al. Sonic hedgehog expression in gastric cancer and gastric adenoma. Oncol Rep. 2007;17:1051–5.

    PubMed  Google Scholar 

  36. Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220–7.

    Article  PubMed  CAS  Google Scholar 

  37. Reik W, Dean W. DNA methylation and mammalian epigenetics. Electrophoresis. 2001;22:2838–43.

    Article  PubMed  CAS  Google Scholar 

  38. Richardson B, Yung R. Role of DNA methylation in the regulation of cell function. J Lab Clin Med. 1999;134:333–40.

    Article  PubMed  CAS  Google Scholar 

  39. Nakao M. Epigenetics: interaction of DNA methylation and chromatin. Gene. 2001;278:25–31.

    Article  PubMed  CAS  Google Scholar 

  40. Irvine RA, Lin IG, Hsieh CL. DNA methylation has a local effect on transcription and histone acetylation. Mol Cell Biol. 2002;22:6689–96.

    Article  PubMed  CAS  Google Scholar 

  41. Okitsu CY, Hsieh CL. DNA methylation dictates histone H3K4 methylation. Mol Cell Biol. 2007;27:2746–57.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the patients who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Dai.

Additional information

L. Zhang and K. Zhong contributed equally to this report.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Zhong, K., Dai, Y. et al. Genome-wide analysis of histone H3 lysine 27 trimethylation by ChIP-chip in gastric cancer patients. J Gastroenterol 44, 305–312 (2009). https://doi.org/10.1007/s00535-009-0027-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-009-0027-9

Keywords

Navigation