Skip to main content

Advertisement

Log in

Gastrointestinal stromal tumors: past, present, and future

  • Review
  • Published:
Journal of Gastroenterology Aims and scope Submit manuscript

Abstract

Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal tumors of the gastrointestinal tract. The name “GIST” was proposed in 1983, but the cell origin of GIST remained unclear until 1998, when my colleagues and I reported immunohistochemical evidence that GIST originated from interstitial cells of Cajal or their precursors. At the same time, we reported gain-of-function mutations of the Kit gene in GISTs. The Kit gene encodes KIT receptor tyrosine kinase, whose structure is similar to that of platelet-derived growth factor receptor (PDGFR). Imatinib mesylate was initially developed as an inhibitor of PDGFR. Then, it was found to be a potent inhibitor of BCR-ABL. Imatinib was successfully used for the treatment of chronic myeloid leukemia. When we reported gain-of-function mutations of the Kit gene in GISTs, the inhibitory effect of imatinib on KIT was already known. Imatinib was then successfully applied to the treatment of GISTs. The interrelationship between the type of Kit gain-of-function mutation and the therapeutic effect of imatinib has been well characterized in GISTs. Although various mutations of Kit and Pdgfr-α genes have been found in GISTs, most GISTs are luckily imatinibsensitive. After long-term administration of imatinib, however, new imatinib-resistant clones develop a secondary mutation of the Kit or Pdgfr-α gene. New drugs and adjuvant regimens against such secondary progression are now being intensively explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazur MT, Clark HB. Gastric stromal tumors. Reappraisal of histogenesis. Am J Surg Pathol 1983;7:507–519.

    Article  PubMed  CAS  Google Scholar 

  2. Corless CL, Fletcher JA, Heinrich MC. Biology of gastrointestinal stromal tumors. J Clin Oncol 2004;22:3813–3825.

    Article  PubMed  CAS  Google Scholar 

  3. Kitamura Y, Miettinen M, Hirota S, Kanakura Y, editors. Gastrointestinal stromal tumor (GIST): from pathology to molecular target therapy. Tokyo: Japan Scientific Societies Press; 2004. p.1–175.

    Google Scholar 

  4. Kitamura Y, Hirota S, Nishida T. Gastrointestinal stromal tumor: a model for molecule-based diagnosis and treatment of solid tumors. Cancer Sci 2003;94:315–320.

    Article  PubMed  CAS  Google Scholar 

  5. Sattler M, Salgia R. Targeting c-kit mutations: basic science to novel therapies. Leuk Res 2003;28S1:S11–20.

    Google Scholar 

  6. Shinomura Y, Kinoshita K, Tsutsui S, Hirota S. Pathophysiology, diagnosis, and treatment of gastrointestinal stromal tumors. J Gastroenterol 2005;40:775–780.

    Article  PubMed  Google Scholar 

  7. Miettinen M, Losota J. Gastrointestinal stromal tumors: review on morphology, molecular pathology, prognosis, and differential diagnosis. Arch Pathol Lab Med 2006;130:1466–1478.

    PubMed  CAS  Google Scholar 

  8. Gold JS, DeMatteo RP. Combined surgical and molecular therapy: the gastrointestinal stromal tumor model. Ann Surg 2006;244:176–184.

    Article  PubMed  Google Scholar 

  9. Coffey RJ, Washington MK, Corless LC, Heinrich MC. Menetier disease and gastrointestinal stromal tumors: hyperproliferative disorders of the stomach. J Clin Invest 2007;117:70–80.

    Article  PubMed  CAS  Google Scholar 

  10. Kitamura Y, Shimada M, Hatanaka K, Miyano Y. Development of mast cells from grafted bone marrow cells in irradiated mice. Nature 1977;268:442–443.

    Article  PubMed  CAS  Google Scholar 

  11. Kitamura Y, Yokoyama M, Matsuda H, Ohno T, Mori KJ. Spleen colony forming cell as common precursor for tissue mast cells and granulocytes. Nature 1981;291:159–160.

    Article  PubMed  CAS  Google Scholar 

  12. Kitamura Y, Go S, Hatanaka K. Decrease of mast cells in W/W v mice and their increase by bone marrow transplantation. Blood 1978;52:447–452.

    PubMed  CAS  Google Scholar 

  13. Kitamura Y, Go S. Decreased production of mast cells in Sl/Sl d anemic mice. Blood 1979;53:492–497.

    PubMed  CAS  Google Scholar 

  14. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A. The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 1988;335:88–89.

    Article  PubMed  CAS  Google Scholar 

  15. Geissler EN, Ryan MA, Housman DE. The dominant-white spotting (W) locus of the mouse encodes the c-kit protooncogene. Cell 1988;55:185–192.

    Article  PubMed  CAS  Google Scholar 

  16. Witte ON. Steel locus defines new multipotent growth factor. Cell 1990;63:5–6.

    Article  PubMed  CAS  Google Scholar 

  17. Kitamura Y. Heterogeneity of mast cells and phenotypic change between subpopulations. Annu Rev Immunol 1989;7:59–76.

    Article  PubMed  CAS  Google Scholar 

  18. Furitsu T, Tsujimura T, Tono T, Ikeda H, Kitayama H, Koshimizu U, et al. Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest 1992;92:1736–1744.

    Article  Google Scholar 

  19. Maeda H, Yamagata A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, et al. Requirement of c-kit for development of intestinal pacemaker system. Development 1992;116:369–375.

    PubMed  CAS  Google Scholar 

  20. Huizinga JD, Thuneberg L, Kluppel M, Malysz J, Mikkelsen HB, Bernstein A. W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 1995;373:347–349.

    Article  PubMed  CAS  Google Scholar 

  21. Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 1998;279:577–580.

    Article  PubMed  CAS  Google Scholar 

  22. Kindblom LG., Remotti HE, Aldenborg F, Meis-Kindblom JM. Gastrointestinal pacemaker cell tumor (GIPACT): gastrointestinal stromal tumors show phenotypic characteristics of the interstitial cells of Cajal. Am J Pathol 1998;152:1259–1269.

    PubMed  CAS  Google Scholar 

  23. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet 1969;20:357–459.

    Article  Google Scholar 

  24. Nocka K, Tan JC, Chiu E, Chu TY, Ray P, Traktman P, et al. Molecular bases of dominant negative and loss of function mutation at the murine c-kit/white spotting locus: W 37, W v, W 41 and W. EMBO J 1990;9:1805–1813.

    PubMed  CAS  Google Scholar 

  25. Hayashi S, Kunisada T, Ogawa M, Yamaguchi K, Nishikawa S. Exon skipping by mutation of an authentic splice site of c-kit gene in W/W mouse. Nucl Acids Res 1991;19:1267–1271.

    Article  PubMed  CAS  Google Scholar 

  26. Tsujimura T, Hirora S, Nomura S, Niwa Y, Yamazaki M, Tono T, et al. Characterization of Ws mutant allele of rats: a 12-base deletion in tyrosine kinase domain of c-kit gene. Blood 1991;78:1942–1946.

    PubMed  CAS  Google Scholar 

  27. Niwa Y, Kasugai T, Ohno K, Morimoto M, Yamazaki M, Dohmae K, et al. Anemia and mast cell depletion in mutant rats that are homozygous at “white spotting (Ws)” locus. Blood 1991;78:1936–1941.

    PubMed  CAS  Google Scholar 

  28. Ward SM, Burns AJ, Torihashi S, Harney SC, Sanders KM. Impaired development of interstitial cells and intestinal electrical rhythmicity in steel mutants. Am J Physiol 1995;269:1577–1585.

    Google Scholar 

  29. Shimada M, Kitamura Y, Yokoyama M, Miyano Y, Maeyama, Yamatodani A, et al. Spontaneous stomach ulcer in genetically mast cell depleted W/W v mice. Nature 1980;293:662–664.

    Article  Google Scholar 

  30. Kitamura Y, Yokoyama M, Matsuda H, Shimada M. Coincidental development of forestomach papilloma and prepyloric ulcer in nontreated mutant mice of W/W v and Sl/Sl d genotypes. Cancer Res 1980;40:3392–3397.

    PubMed  CAS  Google Scholar 

  31. Thomsen L, Robinson TL, Lee JC, Farraway LA, Hughes MJ, Andrews DW, et al. Interstitial cells of Cajal generate a rhythmic pacemaker current. Nat Med 1998;4:848–851.

    Article  PubMed  CAS  Google Scholar 

  32. Yokoyama M, Tatsuta M, Baba M, Kitamura Y. Bile reflux: a possible cause of stomach ulcer in nontreated mutant mice of W/W v genotype. Gastroenterology 1982;82:857–863.

    PubMed  CAS  Google Scholar 

  33. Yokoyama M, Kitamura Y, Kohrogi T, Miyoshi I. Necessity of bile and lack of inhibitory effect of retinoid for development of forestomach papilloma in nontreated mutant mice of W/W v genotype. Cancer Res 1982;42:3806–3809.

    PubMed  CAS  Google Scholar 

  34. Kitamura Y, Hirota S, Nishida T. A loss-of-function mutation of c-kit results in depletion of mast cells and interstitial cells of Cajal, while its gain-of-function mutation results in their oncogenesis. Mutation Res 2001;477:165–171.

    PubMed  CAS  Google Scholar 

  35. Grimbaldeston MA, Chen CC, Piliponsky AM, Tsai M, Tam SY, Galli SJ. Mast cell-deficient W-sash c-kit mutant Kit W-sh/W-sh mice as a model for investigating mast cell biology in vivo. Am J Pathol 2005;167:835–848.

    PubMed  CAS  Google Scholar 

  36. Isozaki K, Hirota S, Nakama A, Miyagawa JI, Shinomura Y, Xu Z, et al. Disturbed intestinal movement, bile reflux to the stomach, and deficiency of c-kit-expressing cells in Ws/Ws mutant rats. Gastroenterology 1995;109:456–464.

    Article  PubMed  CAS  Google Scholar 

  37. Besmer P, Murphy JE, George PC, Qiu F, Bergold PJ, Lederman L, et al. A new acute transforming feline retrovirus and relationship of its oncogene v-kit with the protein kinase gene family. Nature 1986;320:415–421.

    Article  PubMed  CAS  Google Scholar 

  38. Yarden Y, Kuang WJ, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, et al. Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 1987;6:3341–3351.

    PubMed  CAS  Google Scholar 

  39. Rosnet O, Marchetto S, deLapeyriere O, Birnbaum D. Murine Flt3, a gene encoding a novel tyrosine kinase receptor of the PDGFR/CSF1R family. Oncogene 1991;6:1641–1650.

    PubMed  CAS  Google Scholar 

  40. Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y, et al. Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 1995;92:10560–10564.

    Article  PubMed  CAS  Google Scholar 

  41. Longley BJ, Tyrrell L, Lu SZ, Ma YS, Langley K, Ding TG, et al. Somatic c-kit activating mutation in urticaria pigmentosa and aggressive mastocytosis: establishment of clonality in a human mast cell neoplasm. Nat Genet 1996;12:312–314.

    Article  PubMed  CAS  Google Scholar 

  42. Tian Q, Frierson HF Jr, Krystal GW, Moskaluk CA. Activating c-kit gene mutations in human germ cell tumors. Am J Pathol 1999;154:1643–1647.

    PubMed  CAS  Google Scholar 

  43. Mol CD, Lim KB, Sridhar V, Zou H, Chien EYT, Sang BC, et al. Structure of a c-kit product complex reveals the basis for kinase transactivation. J Biol Chem 2003;278:31461–31464.

    Article  PubMed  CAS  Google Scholar 

  44. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, et al. Structure basis for the autoinhibition and STI-571 inhibition of c-kit tyrosine kinase. J Biol Chem 2004;279:31655–31663.

    Article  PubMed  CAS  Google Scholar 

  45. Lemmon MA, Pinchasi D, Zhou M, Lax I, Schlessinger J. Kit receptor dimerization is driven by bivalent binding of stem cell factor. J Biol Chem 1997;272:6311–6317.

    Article  PubMed  CAS  Google Scholar 

  46. Kitamura Y, Hirota S. Kit as a human oncogenic tyrosine kinase. Cell Mol Life Sci 2004;61;2924–2931.

    Article  PubMed  CAS  Google Scholar 

  47. Longley BJ Jr, Metcalfe DD, Tharp M, Wang X, Tyrrell L, Lu SZ, et al. Activating and dominant inactivating c-kit catalytic domain mutations in distinct forms of human mastocytosis. Proc Natl Acad Sci USA 1999;96:1609–1614.

    Article  PubMed  CAS  Google Scholar 

  48. Wolfgang RS, Horny HS, Valent P. Spectrum of associated clonal hematologic non-mast cell lineage disorder occurring in patients with systemic mastocytosis. Int Arch Allergy Immunol 2002;127:140–142.

    Article  Google Scholar 

  49. Akin C, Metcalfe DD. Systemic mastocytosis. Annu Rev Med 2004;55:419–432.

    Article  PubMed  CAS  Google Scholar 

  50. Kitayama H, Kanakura Y, Furitsu T, Tsujimura T, Oritani K, Ikeda H, et al. Constitutively activating mutations of c-kit receptor tyrosine kinase confer factor-independent growth and tumorigenicity of factor-dependent hematopoietic cell lines. Blood 1995;85:790–798.

    PubMed  CAS  Google Scholar 

  51. Sakuma Y, Sakurai S, Oguni S, Hironaka M, Saito K. Alterations of the c-kit gene in testicular germ cell tumors. Cancer Sci 2003;94:486–491.

    Article  PubMed  CAS  Google Scholar 

  52. Kemmer K, Corless CL, Fletcher JA, McGreevey L, Haley A, Griffith D, et al. KIT mutations are common in testicular seminomas. Am J Pathol 2004;164:305–313.

    PubMed  CAS  Google Scholar 

  53. Corless CL, McGreevey L, Haley A, Town A, Heinrich MC. KIT mutations are common in incidental gastrointestinal stromal tumors one centimeter or less in size. Am J Pathol 2002;160:1567–1572.

    PubMed  CAS  Google Scholar 

  54. Lux ML, Rubin BP, Biase TL, Chen CJ, Maclure T, Demetri G, et al. KIT extracellular and kinase domain mutations in gastrointestinal stromal tumors. Am J Pathol 2000;156:791–795.

    PubMed  CAS  Google Scholar 

  55. Lasota J, Wozniak A, Sarlomo-Rikala M, Rys J, Kordek R, Nassar A, et al. Mutations in exons 9 and 13 of KIT gene are rare events in gastrointestinal stromal tumors. Am J Pathol 2000;157:1091–1095.

    PubMed  CAS  Google Scholar 

  56. Hirota S, Nishida T, Isozaki K, Taniguchi M, Nakamura J, Okazaki T, et al. Gain-of-function mutation at the extracellular domain of KIT in gastrointestinal stromal tumours. J Pathol 2001;193:505–510.

    Article  PubMed  CAS  Google Scholar 

  57. Rubin BP, Singer S, Tsao C, Duensing A, Lux ML, Ruiz R, et al. KIT activation is a ubiquitous feature of gastrointestinal stromal tumors. Cancer Res 2001;61:8118–8121.

    PubMed  CAS  Google Scholar 

  58. Heinrich MC, Corless CL, Duensing A, McGreevey L, Chen CJ, Joseph N, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science 2003;299:708–710.

    Article  PubMed  CAS  Google Scholar 

  59. Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y, et al. Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 2003;125:660–667.

    Article  PubMed  CAS  Google Scholar 

  60. Nishida T, Hirota S, Taniguchi M, Hashimoto K, Isozaki K, Nakamura H, et al. Familial gastrointestinal stromal tumours with germline mutation of the KIT gene. Nat Genet 1998;19:323–324.

    Article  PubMed  CAS  Google Scholar 

  61. Hirota S, Okazaki T, Kitamura Y, O’Brien P, Kapusta L, Dardick I. Cause of familial and multiple gastrointestinal autonomic nerve tumors with hyperplasia of interstitial cells of Cajal is germline mutation of the c-kit gene. Am J Surg Pathol 2000;24:326–327.

    Article  PubMed  CAS  Google Scholar 

  62. Hirota S, Nishida T, Isozaki K, Taniguchi M, Nishikawa K, Ohashi A, et al. Familial gastrointestinal stromal tumors associated with dysphagia and novel type germline mutation of KIT gene. Gastroenterology 2002;122:1493–1499.

    Article  PubMed  Google Scholar 

  63. Isozaki K, Terris B, Belghiti J, Schiffmann S, Hirota S, Vanderwinden JM. Germline-activating mutation in the kinase domain of KIT gene in familial gastrointestinal stromal tumors. Am J Pathol 2000;157:1581–1585.

    PubMed  CAS  Google Scholar 

  64. Beghini A, Tibiletti MG, Roversi G, Chiaravalli AM, Serio G, Capella C, et al. Germline mutation in the juxtamembrane domain of the kit gene in a family with gastrointestinal stromal tumors and urticaria pigmentosa. Cancer 2001;92:657–662.

    Article  PubMed  CAS  Google Scholar 

  65. Maeyama H, Hidaka E, Ota H, Minami S, Kajiyama M, Kuraishi A, et al. Familial gastrointestinal stromal tumor with hyperpigmentation: association with a germline mutation of the c-kit gene. Gastroenterology 2001;120:210–215.

    Article  PubMed  CAS  Google Scholar 

  66. Chompret A, Kannengiesser C, Barrois M, Terrier P, Dahan P, Tursz T, et al. PDGFRA germline mutation in a family with multiple cases of gastrointestinal tumor. Gastroenterology 2004;126:318–321.

    Article  PubMed  CAS  Google Scholar 

  67. Chen H, Hirota S, Isozaki K, Sun H, Ohashi A, Kinoshita K, et al. Polyclonal nature of diffuse proliferation of interstitial cells of Cajal in patients with familial and multiple gastrointestinal stromal tumours. Gut 2002;51:793–796.

    Article  PubMed  CAS  Google Scholar 

  68. Sommer G, Agosti V, Ehlers I, Rossi F, Corbacioglu S, Farkas J, et al. Gastrointestinal stromal tumors in a mouse model by target mutation of the Kit receptor tyrosine kinase. Proc Natl Acad Sci USA 2003;100:6706–6711.

    Article  PubMed  CAS  Google Scholar 

  69. Rubin BP, Antonescu CR, Scott-Browne JP, Comstock ML, Gu Y, Tanas MR, et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res 2005;65:6631–6639.

    Article  PubMed  CAS  Google Scholar 

  70. Nakai N, Ishikawa T, Nishitani A, Liu NN, Shincho M, Hao H, et al. A mouse model of a human multiple GIST family with KIT-Asp820Tyr mutation generated by a knock-in strategy. J Pathol 2008;214:302–311.

    Article  PubMed  CAS  Google Scholar 

  71. Blay P, Astudillo A, Buesa JM, Campo E, Abad M, Garcia-Garcia J, et al. Protein kinase C theta highly expressed in gastrointestinal stromal tumors but not in other mesenchymal neoplasms. Clin Cancer Res 2004;10:4089–4095.

    Article  PubMed  CAS  Google Scholar 

  72. Motegi A, Sakurai S, Nakayama H, Sano T, Oyama T, Nakajima T. PKC theta, a novel immunohistochemical marker for gastrointestinal stromal tumor (GIST), especially useful for identifying KIT-negative tumors. Pathol Int 2005;55:106–112.

    Article  PubMed  CAS  Google Scholar 

  73. West RB, Corless CL, Chen X, Rubin BP, Subramanian S, Montgomery K, et al. The novel marker, DOG1, is expressed ubiquitously in gastrointestinal stromal tumors irrespective of KIT or PDGFRA mutation status. Am J Pathol 2004;165:107–113.

    PubMed  CAS  Google Scholar 

  74. Espinosa I, Lee CH, Kim MK, Rouse BT, Subramanian S, Montgomery K, et al. A novel antibody against DOG1 is sensitive and specific marker for gastrointestinal tumors. Am J Surg Pathol 2008;32:210–218.

    PubMed  Google Scholar 

  75. Kinoshita K, Hirota S, Isozaki K, Ohashi A, Nishida T, Kitamura Y, et al. Absence of c-kit gene mutation in gastrointestinal tumors of neurofibromatosis type 1 patients. J Pathol 2004;202:80–85.

    Article  PubMed  CAS  Google Scholar 

  76. Nemoto H, Tate G, Schirinzi A, Suzuki T, Sasaya S, Yoshikawa Y, et al. Novel NF1 gene mutation in a Japanese patient with neurofibromatosis type 1 and a gastrointestinal stromal tumor. J Gastroenterol 2006;41:378–382.

    Article  PubMed  Google Scholar 

  77. Maertens O, Prenen H, Debiec-Rychter M, Wozniak A, Sciot R, Pauwels P, et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum Mol Genet 2006;15:1015–1023.

    Article  PubMed  CAS  Google Scholar 

  78. Agaimy A, Pelz AF, Corless CL, Wunsch PH, Heinrich MC, Hofstaedter F, et al. Epithelioid gastric stromal tumors of the antrum in young females with Carney triad: a report of three new cases with mutational analysis and comparative genomic hybridization. Oncol Rep 2007;18:9–15.

    PubMed  CAS  Google Scholar 

  79. Janeway KA, Liegl B, Harlow A, Le C, Perez-Atayde A, Kozakewich H, et al. Pediatric KIT-wild-type and platelet-derived growth factor receptor alpha-wild-type gastrointestinal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res 2007;67:9084–9088.

    Article  PubMed  CAS  Google Scholar 

  80. Mauro MJ, Druker BJ. STI571: targeting BCR-ABL as therapy for CML. Oncologist 2001;6:233–238.

    Article  PubMed  CAS  Google Scholar 

  81. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 1996;2:561–566.

    Article  PubMed  CAS  Google Scholar 

  82. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdrunger E, Ford JM, et al. Efficiency and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001;344:1031–1037.

    Article  PubMed  CAS  Google Scholar 

  83. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, et al. Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 2000;295:139–145.

    PubMed  CAS  Google Scholar 

  84. Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, et al. STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 2001;20:5054–5058.

    Article  PubMed  CAS  Google Scholar 

  85. Joensuu H, Roberts PJ, Sarlomo-Rikala M, Andersson LC, Tervahartiala P, Tuveson D, et al. Effect of the tyrosine kinase inhibitor STI571 in a patient with a metastatic gas trointestinal stromal tumor. N Engl J Med 2001;344:1052–1056.

    Article  PubMed  CAS  Google Scholar 

  86. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 2002;347:472–480.

    Article  PubMed  CAS  Google Scholar 

  87. Heinrich MC, Corless CL, Demetri GD, Blanke CD, von Mehren M, Joensuu H, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol 2003;21:4342–4349.

    Article  PubMed  CAS  Google Scholar 

  88. Chen LL, Trent JC, Wu EF, Fuller GN, Ramdas L, Zhang W, et al. A missense mutation in KIT kinase domain I correlates with imatinib resistance in gastrointestinal stromal tumors. Cancer Res 2004;64:5913–5919.

    Article  PubMed  CAS  Google Scholar 

  89. Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin Cancer Res 2005;11:4182–4190.

    Article  PubMed  CAS  Google Scholar 

  90. Wardelmann E, Merkelbach-Bruse S, Pauls K, Thomas N, Schildhous HU, Heinicke T, et al. Polyclonal evolution of multiple secondary KIT mutations in gastrointestinal stromal tumors under treatment with imatinib mesylate. Clin Cancer Res 2006;12:1743–1749.

    Article  PubMed  CAS  Google Scholar 

  91. Nishida T, Kanda T, Nishitani A, Takahashi T, Nakajima K, Ishikawa T, et al. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib-resistant gastrointestinal stromal tumor. Cancer Sci 2008;99:799–804.

    Article  PubMed  CAS  Google Scholar 

  92. Shanker S, vanSonnenberg E, Desai J, DiPiro PJ, Van Den Abbeele A, Demetri GD. Gastrointestinal stromal tumor: new nodule-within-a-mass pattern of recurrence after partial response to imatinib mesylate. Radiology 2005;235:892–898.

    Article  Google Scholar 

  93. Desai J, Shankar S, Heinrich MC, Fletcher JA, Fletcher CD, Manola J, et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res 2007;13:5398–5405.

    Article  PubMed  CAS  Google Scholar 

  94. Goodman VL, Rock EP, Dagher R, Ramchandani RP, Abraham S, Gobburu JVS, et al. Approval summary: sunitinib for treatment of imatinib refractory or intolerant gastrointestinal stromal tumors and advanced renal cell carcinoma. Clin Cancer Res 2007;13:1367–1373.

    Article  PubMed  CAS  Google Scholar 

  95. Rossi F, Ehlers I, Agosti V, Socci ND, Viale A, Sommer G, et al. Oncogenic Kit signaling and therapeutic intervention in a mouse model of gastrointestinal tumor. Proc Natl Acad Sci U S A 2006;103:12843–12848.

    Article  PubMed  CAS  Google Scholar 

  96. Bauer S, Yu LK, Demetri GD, Fletcher JA. Heat shock protein 90 inhibition in imatinib-resistant gastrointestinal tumor. Cancer Res 2006;66:9153–61.

    Article  PubMed  CAS  Google Scholar 

  97. Sambol EB, Ambrosini G, Geha RC, Kennealey PT, DeCarolis P, O’Conner R, et al. Flavopiridol targets c-Kit transcription and induces apoptosis in gastrointestinal stromal cells. Cancer Res 2006;66:5858–5866.

    Article  PubMed  CAS  Google Scholar 

  98. Loughrey MB, Mitchell C, Mann CB, Michael M, Waring PM. Gastrointestinal stromal tumor treated with neoadjuvant imatinib. J Clin Pathol 2005;58:779–781.

    Article  PubMed  CAS  Google Scholar 

  99. Ludvigsen L, Toxaerd A, Madhi B, Krarup-Hansen A, Bergenfeldt M. Successful resection of an advanced duodenal gastrointestinal tumor after down-staging with imatinib: report of a case. Surg Today 2007;37:1105–1109.

    Article  PubMed  Google Scholar 

  100. Haller F, Detken S, Schulten HJ, Happel N, Gunawan B, Kuhlgatz J, et al. Surgical management after neoadjuvant imatinib therapy in gastrointestinal stromal tumors (GISTs) with respect to imatinib resistance cued by secondary KIT mutations. Ann Surg Oncol 2007;14:526–532.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamura, Y. Gastrointestinal stromal tumors: past, present, and future. J Gastroenterol 43, 499–508 (2008). https://doi.org/10.1007/s00535-008-2200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00535-008-2200-y

Key words

Navigation