Skip to main content
Log in

Outcrop fracture network characterization for unraveling deformation sequence, geomechanical properties distribution, and slope stability in a flysch sequence (Monte Venere Formation, Northern Apennines, Italy)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A detailed characterization of outcrop fracture networks in the turbiditic flysch sequence of the Monte Venere Formation (Northern Apennines) together with in situ measurements of rock strength using the Schmidt hammer provided important insights into the sequence of deformation and the slope stability conditions. The inferred sequence of structure formation from oldest to youngest is bedding-parallel cleavage, veins and normal faults, joints, and strike-slip faults (sheared joints). Alteration halos around fractures (joints, splay joints, strike-slip faults, and some normal faults) point out that these structures were conductive to meteoric water during uplift and erosion in the Holocene. Calcite-filled veins without alteration halos are considered local barriers to fluid flow and diffusion. Bedding thickness controls rock fracturing characterization parameters in the Monte Venere Formation. Reactivation in shear of pre-existing structures, however, causes the formation of splay joint clusters that locally increase fracture density contributing to degrade the mechanical strength of the rock. These localized clusters are apparent in detailed outcrop maps but they are usually not detected by the rock fracturing characterization parameters. Our data also imply that the presence of bedding-parallel cleavage is more important than layer thickness in controlling the rock compressive strength and ultimately the peak shear strength along a potentially sliding surface. This study takes closer look at landslide formation in a sloped flysch sequence under Mediterranean climate conditions and allowed to consider a conceptual model for landslide occurrence in which structural discontinuities and meteoric water flow through fracture networks are main triggering factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(All maps constructed from data of the Regione Emilia-Romagna 2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agliardi F, Crosta GB, Meloni F, Valle C, Rivolta C (2013) Structurally-controlled instability, damage and slope failure in a porphyry rock mass. Tectonophysics 605:34–47. https://doi.org/10.1016/j.tecto.2013.05.033

    Google Scholar 

  • Agosta F, Ruano P, Rustichelli A, Tondi E, Galindo-Zaldívar J, Sanz de G (2012) Inner structure and deformation mechanisms of normal faults in conglomerates and carbonate grainstones (Granada Basin, Betic Cordillera, Spain): inferences on fault permeability. J Struct Geol 45:4–20. https://doi.org/10.1016/j.jsg.2012.04.003

    Google Scholar 

  • Allmendinger RW, Cardozo N, Fisher DM (2011) Structural geology algorithms: vectors and tensors. Struct Geol Algorithms Vectors Tensors. https://doi.org/10.1017/CBO9780511920202

    Google Scholar 

  • Anders MH, Laubach SE, Scholz CH (2014) Microfractures: a review. J Struct Geol 69:377–394. https://doi.org/10.1016/j.jsg.2014.05.011

    Google Scholar 

  • Antonellini M, Aydin A (1994) Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG Bull 78:355–377

    Google Scholar 

  • Antonellini M, Aydin A (1995) Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG Bull 79:642–671

    Google Scholar 

  • Antonellini M, Mollema PN (2000) A natural analog for a fractured and faulted reservoir in dolomite: Triassic Sella Group, northern Italy. AAPG Bull 84:314–344

    Google Scholar 

  • Antonellini M, Mollema PN (2002) Cataclastic faults in the Loiano sandstones; northern Apennines, Italy. Boll Soc Geol It 121:163–178

    Google Scholar 

  • Antonellini M, Cilona A, Tondi E, Zambrano M, Agosta F (2014) Fluid flow numerical experiments of faulted porous carbonates, Northwest Sicily (Italy). Mar Pet Geol 55:186–201. https://doi.org/10.1016/j.marpetgeo.2013.12.003

    Google Scholar 

  • Antonellini M, Mollema PN, Del Sole L (2017) Application of analytical diffusion models to outcrop observations: implications for mass transport by fluid flow through fractures. Water Resour Res 53:5545–5566. https://doi.org/10.1002/2016WR019864

    Google Scholar 

  • Arbanas Z, Mihalic S, Grosic M, Dugonjic S, Vivoda M (2010) Brus landslide, translational block sliding in flysch rock mass. In: Proceedings of the European rock mechanics symposium rock mechanics in civil and environmental engineering, Lausanne, Switzerland, pp 635–638

  • Argnani A, Fontana D, Stefani C, Zuffa GG (2006) Palaeogeography of the Upper Cretaceous–Eocene carbonate turbidites of the Northern Apennines from provenance studies. Geol Soc Spec Publ 262:259–275. https://doi.org/10.1144/GSL.SP.2006.262.01.16

    Google Scholar 

  • Aydin A (2000) Fractures, faults, and hydrocarbon entrapment, migration and flow. Mar Pet Geol 17:797–814. https://doi.org/10.1016/S0264-8172(00)00020-9

    Google Scholar 

  • Aydin A, Basu A (2005) The Schmidt hammer in rock material characterization. Eng Geol 81:1–14

    Google Scholar 

  • Bai T, Pollard DD (2000) Fracture spacing in layered rocks: a new explanation based on the stress transition. J Struct Geol 22:43–57. https://doi.org/10.1016/S0191-8141(99)00137-6

    Google Scholar 

  • Balsamo F, Storti F, Salvini F, Silva AT, Lima CC (2010) Structural and petrophysical evolution of extensional fault zones in low-porosity, poorly lithified sandstones of the Barreiras Formation, NE Brazil. J Struct Geol 32:1806–1826. https://doi.org/10.1016/j.jsg.2009.10.010

    Google Scholar 

  • Barton N, Bandis S (1990) Review of predictive capabilities of JRC–JCS model in engineering practice. In: Barton N, Stephansson S (eds) Rock joints. Balkema, Rotterdam, pp 603–610

    Google Scholar 

  • Becker A, Gross MR (1996) Mechanism for joint saturation in mechanically layered rocks: an example from southern Israel. Tectonophysics 257:223–237

    Google Scholar 

  • Bense VF, Gleeson T, Loveless SE, Bour O, Scibek J (2013) Fault zone hydrogeology. Earth Sci Rev 127:171–192. https://doi.org/10.1016/j.earscirev.2013.09.008

    Google Scholar 

  • Bettelli G, Vannucchi P (2003) Structural style of the off-scraped Ligurian oceanic sequences of the Northern Apennines: new hypothesis concerning the development concerning the development of mélange block-in-matrix fabric. J Struct Geol 25:371–388. https://doi.org/10.1016/S0191-8141(02)00026-3

    Google Scholar 

  • Biavati G (2007) Valutazione empirica dell’efficacia di sistemi drenanti realizzati su 13 frane dell’Appennino emiliano. Giornale di Geol Appl 7:31–42

    Google Scholar 

  • Binet S, Guglielmi Y, Bertrand C, Mudry J (2007a) Unstable rock slope hydrogeology: insights from the large-scale study of western Argentera-Mercantour hillslopes (South-East France). Bulletin de la Societè Geologique de France 178:159–168. https://doi.org/10.2113/gssgfbull.178.2.159

    Google Scholar 

  • Binet S, Jomard H, Lebourg T, Guglielmi Y, Tric E, Bertrand C, Mudry J (2007b) Experimental analysis of groundwater flow through a landslide slip surface using natural and artificial water chemical tracers. Hydrol Process 21:3463–3472. https://doi.org/10.1002/hyp.6579

    Google Scholar 

  • Binet S, Spadini L, Bertrand C, Guglielmi Y, Mudry J, Scavia C (2009) Variability of the groundwater sulfate concentration in fractured rock slopes: a tool to identify active unstable areas. Hydrol Earth Syst Sci 13:2315–2327

    Google Scholar 

  • Bois T, Bouissou S, Jaboyedoff M (2012) Influence of structural heterogeneities and of large scale topography on imbricate gravitational rock slope failures: new insights from 3-D physical modeling and geomorphological analysis. Tectonophysics 526:147–156. https://doi.org/10.1016/j.tecto.2011.08.001

    Google Scholar 

  • Bordoni P, Haines J, Di G, Milana G, Augliera P, Cercato M, Martelli L, Cara F et al (2007) Cavola experiment site: geophysical investigations and deployment of a dense seismic array on a landslide. Ann Geophys 50:627–649

    Google Scholar 

  • Bordoni PG, Di G, Haines AJ, Cara F, Milana G, Rovelli A (2010) Issues in choosing the references to use for spectral ratios from observations and modeling at Cavola Landslide in Northern Italy. Bull Seismol Soc Am 100:1578–1613. https://doi.org/10.1785/0120090116

    Google Scholar 

  • Bouissou S, Darnault R, Chemenda A, Rolland Y (2012) Evolution of gravity-driven rock slope failure and associated fracturing: geological analysis and numerical modelling. Tectonophysics 526:157–166. https://doi.org/10.1016/j.tecto.2011.12.010

    Google Scholar 

  • Brideau MA, Stead D (2009) The role of tectonic damage and brittle rock fracture in the development of large rock slope failures. Geomorphology 103:30–49

    Google Scholar 

  • Brown ET (2004) The mechanics of discontinua: engineering in discontinuous rock masses. Aust Geomech J 39:1–20

    Google Scholar 

  • Bruni P (1973) Considerazioni tettoniche e paleogeografiche delle serie dell’Appennino bolognese tra le valli dell’Idice e del Santerno. Memorie della Società’ Geol Italiana 12:157–185

    Google Scholar 

  • Carlini M, Chelli A, Vescovi P, Artoni A, Clemenzi L, Tellini C, Torelli L (2016) Tectonic control on the development and distribution of large landslides in the Northern Apennines (Italy). Geomorphology 253:425–437

    Google Scholar 

  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility mapping: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. https://doi.org/10.1007/s10346-010-0207-y

    Google Scholar 

  • Cibin U, Spadafora E, Zuffa GG, Castellarin A (2001) Continental collision history from arenites of episutural basins in the Northern Apennines, Italy. Bull Geol Soc Am 113:4–19. https://doi.org/10.1130/0016-7606(2001)113-0004

    Google Scholar 

  • Collotta T (2003) Landslide hazard evaluation: the landslide hazard curves. J Geotech Geo-environ Eng 129:520–528. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:6(520)

    Google Scholar 

  • Conti S, Fontana D (2002) Sediment instability related to fluid venting in Miocene authigenic carbonate deposits of the northern Apennines (Italy). Int J Earth Sci (Geol Rundsch) 91:1030–1040. https://doi.org/10.1007/s00531-002-0282-y

    Google Scholar 

  • Cooke ML, Pollard DD (1996) Fracture propagation paths under mixed mode loading within rectangular blocks of polymethyl methacrylate. J Geophys Res 101:3387–3400. https://doi.org/10.1029/95JB02507

    Google Scholar 

  • Cooke ML, Mollema PN, Pollard DD, Aydin A (1999) Interlayer slip and joint localization in the East Kaibab Monocline, Utah: field evidence and results from numerical modelling. Geol Soc Lond Spec Publ 169:23–49. https://doi.org/10.1144/GSL.SP.2000.169.01.03

    Google Scholar 

  • Cooke ML, Simo JA, Underwood CA, Rijken P (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sediment Geol 184:225–239. https://doi.org/10.1016/j.sedgeo.2005.11.004

    Google Scholar 

  • Cruikshank KM, Zhao G, Johnson AM (1991) Analysis of minor fractures associated with joints and faulted joints. J Struct Geol 13:865–886. https://doi.org/10.1016/0191-8141(91)90083-U

    Google Scholar 

  • de Joussineau G, Aydin A (2007) The evolution of the damage zone with fault growth in sandstone and its multiscale characteristics. J Geophys Res 112:B12401. https://doi.org/10.1029/2006jb004711

    Google Scholar 

  • de Joussineau G, Mutlu O, Aydin A, Pollard DD (2007) Characterization of strike-slip fault–splay relationships in sandstone. J Struct Geol 29:1831–1842. https://doi.org/10.1016/j.jsg.2007.08.006

    Google Scholar 

  • Dewey JF, Helman ML, Knott SD, Turco E, Hutton DHW (1989) Kinematics of the western Mediterranean. Geol Soc Lond Spec Publ 45:265–283. https://doi.org/10.1144/GSL.SP.1989.045.01.15

    Google Scholar 

  • Dhahri F, Benassi R, Mhamdi A, Zeyeni K, Boukadi N (2016) Structural and geomorphological controls of the present-day landslide in the Moulares phosphate mines (western-central Tunisia). Bull Eng Geol Environ 75:1459–1468

    Google Scholar 

  • Díaz G, Mollema PN, Antonellini M (2015) Fracture patterns and fault development in the pelagic limestones of the Monte Conero anticline (Italy). Italian J Geosci 134:495–512. https://doi.org/10.3301/IJG.2014.33

    Google Scholar 

  • Eichhubl P, Taylor WL, Pollard DD, Aydin A (2004) Paleo-fluid flow and deformation in the Aztec Sandstone at the Valley of Fire, Nevada—evidence for the coupling of hydrogeological, diagenetic, and tectonic processes. Bull Geol Soc Am 116:1120–1136. https://doi.org/10.1130/B25446.1

    Google Scholar 

  • Eichhubl P, D’Onfro PS, Aydin A, Waters J, McCarty DK (2005) Structure, petrophysics, and diagenesis of shale entrained along a normal fault at Black Diamond Mines, California—implications for fault seal. AAPG Bull 89:1113–1137. https://doi.org/10.1306/04220504099

    Google Scholar 

  • Eichhubl P, Davatzes NC, Becker SP (2009) Structural and diagenetic control of fluid migration and cementation along the Moab fault, Utah. AAPG Bull 93:653–681. https://doi.org/10.1306/02180908080

    Google Scholar 

  • Engelder T, Geiser P (1980) On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York. J Geophys Res 85:6319–6341

    Google Scholar 

  • Faulkner DR, Jackson CAL, Lunn RJ, Schlische RW, Shipton ZK, Wibberley CAJ, Withjack MO (2010) A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones. J Struct Geol 32:1557–1575. https://doi.org/10.1016/j.jsg.2010.06.009

    Google Scholar 

  • Fossen H, Bale A (2007) Deformation bands and their influence on fluid flow. AAPG Bull 91:1685–1700. https://doi.org/10.1306/07300706146

    Google Scholar 

  • Fossen H, Schultz RA, Shipton ZK, Mair K (2007) Deformation bands in sandstone: a review. J Geol Soc Lond 164:755–769

    Google Scholar 

  • Gabrielsen RH, Braathen A (2014) Models of fracture lineaments—joint swarms, fracture corridors and faults in crystalline rocks, and their genetic relations. Tectonophysics 628:26–44. https://doi.org/10.1016/j.tecto.2014.04.022

    Google Scholar 

  • Gale JFW, Laubach SE, Olson JE, Eichhubl P, Fall A (2014) Natural fractures in shale: a review and new observations. AAPG Bull 98:2165–2216

    Google Scholar 

  • Galeandro A, Doglioni A, Simeone V, Šimůnek J (2014) Analysis of infiltration processes into fractured and swelling soils as triggering factors of landslides. Environ Earth Sci 71:2911–2923. https://doi.org/10.1007/s12665-013-2666-7

    Google Scholar 

  • Gasperi G, Bettelli G, Panini F, Pizziolo M, Bonazzi U, Fioroni C, Fregni P, Vaiani SC (2005) Note Illustrative e Carta Geologia d’Italia 1:50.000, Foglio n. 219 Sassuolo. SELCA, Firenze

    Google Scholar 

  • Giani GP (1992) Rock slope stability analysis. CRC Press, Boca Raton

    Google Scholar 

  • Gross MR, Fischer MP, Engelder T, Greenfield RJ (1995) Factors controlling joint spacing in interbedded sedimentary rocks: integrating numerical models with field observations from the Monterey Formation, USA. Geol Soc Spec Publ 92:215–233. https://doi.org/10.1144/GSL.SP.1995.092.01.12

    Google Scholar 

  • Hoek E (1983) Strength of jointed rock masses. Geotechnique 33:187–223

    Google Scholar 

  • Hoek E (1986) Practical rock mechanics—developments over the past 25 years. Rock engineering and excavation in an urban environment. In: Proc. conference, Hong Kong, 1986, (Institution of Mining & Metallurgy, London; IMM N. American Publications Center, Brookfield, VT), pp ix–xvi

  • Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186

    Google Scholar 

  • Huang C, Byrne TB, Ouimet WB, Lin CW, Hu JC, Fei LY, Wang YB (2016) Tectonic foliations and the distribution of landslides in the southern Central Range, Taiwan. Tectonophysics 692:203–212. https://doi.org/10.1016/j.tecto.2016.06.004

    Google Scholar 

  • Jomard H, Lebourg T, Binet S, Tric E, Hernandez M (2007) Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nova 19:48–57. https://doi.org/10.1111/j.1365-3121.2006.00712.x

    Google Scholar 

  • Krejc O, Baron I, Bıl M, Hubatka F, Jurova Z, Kirchner K (2002) Slope movements in the Flysch Carpathians of Eastern Czech Republic triggered by extreme rainfalls in 1997: a case study. Phys Chem Earth 27:1567–1576

    Google Scholar 

  • Lacoste A, Vendeville BC, Loncke L (2011) Influence of combined incision and fluid overpressure on slope stability: experimental modelling and natural applications. J Struct Geol 33:731–742. https://doi.org/10.1016/j.jsg.2011.01.016

    Google Scholar 

  • Lacoste A, Vendeville BC, Mourgues R, Loncke L, Lebacq M (2012) Gravitational instabilities triggered by fluid overpressure and downslope incision—insights from analytical and analogue modelling. J Struct Geol 42:151–162. https://doi.org/10.1016/j.jsg.2012.05.011

    Google Scholar 

  • Laubach SE, Olson JE, Cross MR (2009) Mechanical and fracture stratigraphy. AAPG Bull 93:1413–1426. https://doi.org/10.1306/07270909094

    Google Scholar 

  • Le Roux O, Schwartz S, Gamond JF et al (2010) Interaction between tectonic and erosion processes on the morphogenesis of an Alpine valley: geological and geophysical investigations in the lower Romanche valley (Belledonne massif, western Alps). Int J Earth Sci (Geol Rundsch) 99:427–441. https://doi.org/10.1007/s00531-008-0393-1

    Google Scholar 

  • Lebourg T, El B, Hernandez M (2009) Control of slope deformations in high seismic area: results from the Gulf of Corinth observatory site (Greece). Eng Geol 108:295–303. https://doi.org/10.1016/j.enggeo.2009.04.004

    Google Scholar 

  • Leuratti E, Lucente CC, Medda E, Manzi V, Corsini A, Tosatti G, Ronchetti F, Guerra M (2007) Primi interventi di consolidamento sulle frane dei Boschi di Valoria, Tolara e Lezza Nuova (Val Dolo e Val Dragone, Appennino modenese). Giornale Geol Applicata 7:17–30

    Google Scholar 

  • Margielewski W (2006) Structural control and types of movements of rock mass in anisotropic rocks: case studies in the Polish Flysch Carpathians. Geomorphology 77:47–68

    Google Scholar 

  • Marroni M, Molli G, Ottria G, Pandolfi L (2001) Tectono-sedimentary evolution of the external liguride units (Northern Apennines, Italy): insights in the pre-collisional history of a fossil ocean-continent transition zone. Geodin Acta 14:307–320. https://doi.org/10.1016/S0985-3111(00)01050-0

    Google Scholar 

  • Martel SJ (2017) Progress in understanding sheeting joints over the past two centuries. J Struct Geol 94:68–86. https://doi.org/10.1016/j.jsg.2016.11.003

    Google Scholar 

  • Martel SJ, Pollard DD (1989) Mechanics of slip and fracture along small faults and simple strike-slip fault zones in granitic rock. J Geophys Res 94:9417–9428. https://doi.org/10.1029/JB094iB07p09417

    Google Scholar 

  • McGinnis RN, Ferrill DA, Morris AP, Smart KJ, Lehrmann D (2017) Mechanical stratigraphic controls on natural fracture spacing and penetration. J Struct Geol 95:160–170. https://doi.org/10.1016/j.jsg.2017.01.001

    Google Scholar 

  • Mikoš M, Petkovšek A, Majes B (2009) Mechanisms of landslides in over-consolidated clays and flysch. Landslides 6:367–371. https://doi.org/10.1007/s10346-009-0171-6

    Google Scholar 

  • Mollema PN, Antonellini M (1999) Development of strike-slip faults in the dolomites of the Sella Group, Northern Italy. J Struct Geol 21:273–292. https://doi.org/10.1016/S0191-8141(98)00121-7

    Google Scholar 

  • Mourgues R, Costa ACG, Marques FO, Lacoste A, Hildenbrand A (2016) Structural consequences of cohesion in gravitational instabilities triggered by fluid overpressure: analytical derivation and experimental testing. J Struct Geol 87:134–143. https://doi.org/10.1016/j.jsg.2016.04.008

    Google Scholar 

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. The National Academies Press, Washington, DC. https://doi.org/10.17226/2309

    Google Scholar 

  • Olson JE (1997) Natural fracture pattern characterization using a mechanically-based model constrained by geologic data—moving closer to a predictive tool. Int J Rock Mech Min Sci 34:171.e1–171.e12. https://doi.org/10.1016/S1365-1609(97)00227-X

    Google Scholar 

  • Pahl PJ (1981) Estimating the mean length of discontinuity traces. Int J Rock Mech Min Sci 18:221–228. https://doi.org/10.1016/0148-9062(81)90976-1

    Google Scholar 

  • Palmstrøm A (1982) Volumetric joint count—a successful and simple measure of the degree of rock mass jointing. In: Proc IV int congress int ass eng geology. New Delhi, pp 221–228

  • Palmstrøm A (1996a) Characterizing rock masses by the RMi for use in practical rock engineering: part 1: the development of the Rock Mass index (RMi). Tunn Undergr Sp Technol 11:175–188. https://doi.org/10.1016/0886-7798(96)00015-6

    Google Scholar 

  • Palmstrøm A (1996b) Characterizing rock masses by the RMi for use in practical rock engineering, part 2: some practical applications of the rock mass index (RMi). Tunn Undergr Sp Technol 11:287–303. https://doi.org/10.1016/0886-7798(96)00028-4

    Google Scholar 

  • Palmstrøm A (2001) Measurement and characterization of rock mass jointing. In: Sharma VM, Saxena KR (eds) In-situ characterization of rocks. Balkema Publishers, Lise, pp 10–44

    Google Scholar 

  • Peacock DCP, Sanderson DJ (2018) Structural analyses and fracture network characterisation: seven pillars of wisdom. Earth Sci Rev 184:13–28

    Google Scholar 

  • Pollard DD, Aydin A (1988) Progress in understanding jointing over the past century. Geol Soc Am Bull 100:1181–1204

    Google Scholar 

  • Pollard DD, Aydin A (1990) Progress in understanding jointing over the past century. Spec Pap Geol Soc Am 253:313–336. https://doi.org/10.1130/SPE253-p313

    Google Scholar 

  • Pollard DD, Segall P (1987) Theoretical displacements and stresses near fractures in rock: with applications to faults, joints, veins, and solution surfaces. In: Atkinson BK (ed) Fracture mechanics of rock. Academic Press, London, pp 277–349. https://doi.org/10.1016/B978-0-12-066266-1.50013-2

    Google Scholar 

  • Regione Emilia-Romagna (2017) Frane e rischio idrogeologico—Geologia, sismica e suoli—E-R Ambiente. http://ambiente.regione.emilia-romagna.it/geologia/temi/dissesto-idrogeologico. Accessed 09 Aug 2017

  • Renshaw CE, Pollard DD (1994a) Numerical simulation of fracture set formation: a fracture mechanics model consistent with experimental observations. J Geophys Res 99:9359–9372. https://doi.org/10.1029/94JB00139

    Google Scholar 

  • Renshaw CE, Pollard DD (1994b) Are large differential stresses required for straight fracture propagation paths? J Struct Geol 16:817–822. https://doi.org/10.1016/0191-8141(94)90147-3

    Google Scholar 

  • Renshaw CE, Pollard DD (1995) An experimentally verified criterion for propagation across unbounded frictional interfaces in brittle, linear elastic materials. Int J Rock Mech Min Sci Geomech Abstr 32:237–249. https://doi.org/10.1016/0148-9062(94)00037-4

    Google Scholar 

  • Ronchetti F, Borgatti L, Cervi F, Gorgoni C, Piccinini L, Vincenzi V, Corsini A (2009) Groundwater processes in a complex landslide, northern Apennines, Italy. Nat Hazards Earth Syst Sci 9:895–904. https://doi.org/10.5194/nhess-9-895-2009

    Google Scholar 

  • Rustichelli A, Torrieri S, Tondi E, Laurita S, Strauss C, Agosta F, Balsamo F (2016) Fracture characteristics in Cretaceous platform and overlying ramp carbonates: an outcrop study from Maiella Mountain (central Italy). Mar Pet Geol 76:68–87. https://doi.org/10.1016/j.marpetgeo.2016.05.020

    Google Scholar 

  • Sandström B, Annersten H, Tullborg EL (2010) Fracture-related hydrothermal alteration of metagranitic rock and associated changes in mineralogy, geochemistry and degree of oxidation: a case study at Forsmark, central Sweden. Int J Earth Sci (Geol Rundsch) 99:1–25. https://doi.org/10.1007/s00531-008-0369-1

    Google Scholar 

  • Schultz RA, Fossen H (2008) Terminology for structural discontinuities. AAPG Bull 92:853–867. https://doi.org/10.1306/02200807065

    Google Scholar 

  • Segall P, Pollard DD (1983) Nucleation and growth of strike slip faults in granite. J Geophys Res 88(NB1):555–568

    Google Scholar 

  • Shackleton RJ, Cooke ML, Sussman AJ (2005) Evidence for temporally changing mechanical stratigraphy and effects on joint-network architecture. Geology 33:101–104

    Google Scholar 

  • Shanmugam G, Wang Y (2015) The landslide problem. J Palaeogeogr 4:109–166. https://doi.org/10.3724/SP.J.1261.2015.00071

    Google Scholar 

  • Stead D, Wolter A (2015) A critical review of rock slope failure mechanisms: the importance of structural geology. J Struct Geol 74:1–23. https://doi.org/10.1016/j.jsg.2015.02.002

    Google Scholar 

  • Stille H, Palmström A (2003) Classification as a tool in rock engineering. Tunn Undergr Sp Technol 18:331–345. https://doi.org/10.1016/S0886-7798(02)00106-2

    Google Scholar 

  • Varnes DJ (1981) The principles and practice of landslide hazard zonation. Bull Int Assoc Eng Geol 23:13–14. https://doi.org/10.1007/BF02594720

    Google Scholar 

  • Walter T, Schmincke HU (2002) Rifting, recurrent landsliding and Miocene structural reorganization on NW-Tenerife (Canary Islands). Int J Earth Sci (Geol Rundsch) 91:615–628. https://doi.org/10.1007/s00531-001-0245-8

    Google Scholar 

  • Wendler J, Köster J, Götze J et al (2012) Carbonate diagenesis and feldspar alteration in fracture-related bleaching zones (Buntsandstein, central Germany): possible link to CO2-influenced fluid–mineral reactions. Int J Earth Sci (Geol Rundsch) 101:159–176. https://doi.org/10.1007/s00531-011-0671-1

    Google Scholar 

  • Willemse EJM, Pollard DD (1998) On the orientation and patterns of wing cracks and solution surfaces at the tips of a sliding flaw or fault. J Geophys Res 103:2427–2438. https://doi.org/10.1029/97JB01587

    Google Scholar 

  • Wu H, Pollard DD (1992) Propagation of a set of opening-mode fractures in layered brittle materials under uniaxial strain cycling. J Geophys Res 97:3381–3396. https://doi.org/10.1029/91JB02857

    Google Scholar 

  • Wu H, Pollard DD (1995) An experimental study of the relationship between joint spacing and layer thickness. J Struct Geol 17:887–905. https://doi.org/10.1016/0191-8141(94)00099-L

    Google Scholar 

  • Wyllie C, Mah W (2004) Rock slope engineering civil and mining. In: Hoek E, Bray JW (eds) Rock slope engineering. Taylor & Francis Group, London

    Google Scholar 

  • Wyllie DC, Mah W (2014) Rock slope engineering, 4th edn. CRC Press, London

    Google Scholar 

  • Zeng L, Tang X, Qi J, Gong L, Yu F, Wang T (2012) Insight into the Cenozoic tectonic evolution of the Qaidam Basin, Northwest China from fracture information. Int J Earth Sci (Geol Rundsch) 101:2183–2191. https://doi.org/10.1007/s00531-012-0779-y

    Google Scholar 

Download references

Acknowledgements

Marco Antonellini acknowledges basic research funding (RFO) from the University of Bologna for the fieldwork performed during this study. Excellent reviews by Fabrizio Balsamo and Ferid Dhahri contributed to improve significantly the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antonellini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonellini, M., Mollema, P.N. Outcrop fracture network characterization for unraveling deformation sequence, geomechanical properties distribution, and slope stability in a flysch sequence (Monte Venere Formation, Northern Apennines, Italy). Int J Earth Sci (Geol Rundsch) 108, 735–751 (2019). https://doi.org/10.1007/s00531-019-01685-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-019-01685-y

Keywords

Navigation