Skip to main content

Advertisement

Log in

Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Three-dimensional geophysical modelling of the early Late Miocene Pásztori volcano (ca. 11–10 Ma) and adjacent area in the Little Hungarian Plain Volcanic Field of the Danube Basin was carried out to get an insight into the most prominent intra-crustal structures here. We have used gridded gravity and magnetic data, interpreted seismic reflection sections and borehole data combined with re-evaluated geological constraints. Based on petrological analysis of core samples from available six exploration boreholes, the volcanic rocks consist of a series of alkaline trachytic and trachyandesitic volcanoclastic and effusive rocks. The measured magnetic susceptibilities of these samples are generally very low suggesting a deeper magnetic source. The age of the modelled Pásztori volcano, buried beneath a 2 km-thick Late Miocene-to-Quaternary sedimentary sequence, is 10.4 +/− 0.3 Ma belonging to the dominantly normal C5 chron. Our model includes crustal domains with different effective induced magnetizations and densities: uppermost 0.3–1.8 km thick layer of volcanoclastics underlain by a trachytic-trachyandesitic coherent and volcanoclastic rock units of a maximum 2 km thickness, with a top situated at minimal depth of 2.3 km, and a deeper magmatic pluton in a depth range of 5–15 km. The 3D model of the Danube Basin is consistent with observed high ΔZ magnetic anomalies above the volcano, while the observed Bouguer gravity anomalies correlate better with the crystalline basement depth. Our analysis contributes to deeper understanding of the crustal architecture and the evolution of the basin accompanied by alkaline intraplate volcanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. 1 mGal = 10−5 m s−2.

References

  • Alvers MR, Götze H-J, Barrio-Alvers L, Plonka C, Schmidt S, Lahmeyer B (2014) A novel warped-space concept for interactive 3D-geometry-inversion to improve seismic imaging. First Break 32:61–67

    Google Scholar 

  • Bada G, Horváth F, Dövényi P, Szafián P, Windhoffer G, Cloetingh S (2007) Present-day stress field and tectonic inversion in the Pannonian basin. Glob Planet Change 58:165–180

    Article  Google Scholar 

  • Balázs E, Nusszer A (1987) Unterpannonischer Vulkanismus der Beckengebiete Ungarns. Ann Hung Geol Inst 69:95–104

    Google Scholar 

  • Balázs A, Matenco L, Magyar I, Horváth F, Cloetingh S (2016) The link between tectonics and sedimentation in back-arc basins: new genetic constraints from the analysis of the Pannonian Basin. Tectonics 35:1526–1559

    Article  Google Scholar 

  • Balázs A, Burov E, Matenco L, Vogt K, Francois T, Cloetingh S (2017) Symmetry during the syn- and post-rift evolution of extensional back-arc basins: The role of inherited orogenic structures. Earth Planet Sci Lett 462:86–98

    Article  Google Scholar 

  • Balogh K, Árva-Sós E, Pécskay Z, Ravasz-Baranyai L (1986) K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary. Acta Mineralogica et Petrographica Szeged 28:75–93

    Google Scholar 

  • Bielik M (1998) Analysis of the gravity field in the Western and Eastern Carpathian junction area: density modeling. Geol Carpath 49:75–83

    Google Scholar 

  • Bielik M (2000) Regional lithospheric density modelling of the Western Carpathians. In: Atlas of geophysical maps and profiles No. 0801840 301/180. Open file report—Geofond. State Geological Institute of Dionýz Štúr, Bratislava, pp 1–5

  • Blaikie TN, Ailleres L, Betts PG, Cas RAF (2014) A geophysical comparison of the diatremes of simple and complex maar volcanoes, Newer Volcanics Province, south-eastern Australia. J Volcanol Geoth Res 276:64–81

    Article  Google Scholar 

  • Clark DA, Emerson DW (1991) Notes on rock magnetization characteristics in applied geophysical studies. Expl Geophys 22:547–555

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, Stéphane P, Kervyn M (2014) Endogenous and exogenous growth of the monogenetic Lemptégy volcano, Chaîne des Puys, France. Geosphere 10:998–1019

    Article  Google Scholar 

  • Eliáš M, Uhmann J (1968) Densities of the rocks in Czechoslovakia. Geological Survey, Prague, p 85

    Google Scholar 

  • Faccenna C, Becker TW, Auer L, Billi A, Boschi L, Brun JP, Capitanio FA, Funiciello F, Horváth F, Jolivet L (2014) Mantle dynamics in the Mediterranean. Rev Geophys 52:283–332

    Article  Google Scholar 

  • Fodor L, Sztanó O, Magyar I, Törő B, Uhrin A, Várkonyi A, Csillag G, Kövér S, Lantos Z, Tőkés L (2013) Late Miocene depositional units and syn-sedimentary deformation in the western Pannonian basin, Hungary. In: Schuster R (ed) 11th workshop on alpine geological studies and 7th European symposium on fossil algae. Abstracts and field guides. Berichte der Geologischen Bundesanstalt, Schladming, pp 33–34

    Google Scholar 

  • Germa A, Connor LJ, Cañon-Tapia E, Le Corvec N (2013) Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents. Bull Volcanol 75(12):782

    Article  Google Scholar 

  • Götze H-J (2014) Potential method and Geoinformation Systems. In: Freeden W, Nashed MZ, Sonar T (eds) Handbook of geomathematics. Springer, Berlin, pp 1–21

    Google Scholar 

  • Götze H-J, Lahmeyer B (1988) Application of three-dimensional interactive modelling in gravity and magnetics. Geophysics 53:1096–1108

    Article  Google Scholar 

  • Götze H-J, El-Kelani R, Schmidt S, Rybakov M, Hassouneh M, Förster H-J, Ebbing J (2007) Integrated 3D density modelling and segmentation of the dead sea transform. Int J Earth Sci (Geol Rundsch) 96:289–302

    Article  Google Scholar 

  • Gudmundsson MT, Milsom J (1997) Gravity and magnetic studies of the subglacial Grímsvötn volcano, Iceland: Implications for crustal and thermal structure. J Geophys Res 102(B4):7691–7704

    Article  Google Scholar 

  • Haas J, Budai T, Csontos L, Fodor L, Konrád G (2010) Pre-Cenozoic geological map of Hungary. 1:500000. Geological Institute of Hungary, Budapest

    Google Scholar 

  • Haller M, Németh K (2009) Cenozoic diatremes in Chubut, Northern Patagonia, Argentina. In: 3ICM international maar conference, Malargüe, Argentina, extended abstract, p 23

  • Harangi S (2001) Neogene magmatism in the Alpine-Pannonian Transition Zone—a model for melt generation in a complex geodynamic setting. Acta Vulcanol 13:25–39

    Google Scholar 

  • Harangi R, Harangi S (1995) Volcanological study on the Neogene basaltic volcano of Sághegy (Little Hungarian Plain Volcanic Field, Western Hungary). In: Downes H, Vaselli O (eds) Neogene and related volcanism in the Carpatho–Pannonian Region. Acta Vulcanology, vol 7, pp 189–197

  • Harangi S, Lenkey L (2007) Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume. Geol Soc Am Spec Pap 418:67–92

    Google Scholar 

  • Harangi S, Vaselli O, Kovács R, Coradossi N, Tonarini S, Ferraro D (1994) Volcanological and magmatological studies on the Neogene basaltic volcanoes of the Southern Little Hungarian Plain, Western Hungary. Min Petr Acta 37:183–197

    Google Scholar 

  • Harangi S, Vaselli O, Tonarini S, Szabó C, Harangi R, Coradossi N (1995a) Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain Volcanic Field (Western Hungary). Acta Vulcanol 7:173–187

    Google Scholar 

  • Harangi S, Wilson M, Tonarini S (1995b) Petrogenesis of Neogene potassic volcanic rocks in the Pannonian Basin. Acta Vulcanol 7:125–134

    Google Scholar 

  • Harangi S, Jankovics ME, Sági T, Kiss B, Lukács R, Soós I (2015) Origin and geodynamic relationships of the Late Miocene to Quaternary alkaline basalt volcanism in the Pannonian Basin, eastern-central Europe. Int J Earth Sci (Geol Rundsch) 104:2007–2032

    Article  Google Scholar 

  • Hetényi G, Ren Y, Dando B, Stuart GW, Hegedűs E, Kovács AC, Houseman GA (2015) Crustal structure of the Pannonian Basin: the AlCaPa and Tisza Terrains and the Mid-Hungarian Zone. Tectonophysics 646:106–116

    Article  Google Scholar 

  • Holohan EPR, Walter T, Schöpfer MPJ, Walsh JJ, Van Wyk De Vries B, Troll R (2013) Origins of oblique-slip faulting during caldera subsidence. J Geophys Res Solid Earth 118:1778–1794

    Article  Google Scholar 

  • Horváth F (1995) Phases of compression during the evolution of the Pannonian Basin and its bearing on hydrocarbon exploration. Mar Pet Geol 12(8):837–844

    Article  Google Scholar 

  • Horváth F, Musitz B, Balázs A, Végh A, Uhrin A, Nádor A, Koroknai B, Pap N, Tóth T, Wórum G (2015) Evolution of the Pannonian basin and its geothermal resources. Geothermics 53:328–352

    Article  Google Scholar 

  • Hrušecký I (1997) Central part of the Danube basin in Slovakia—geophysical-geological model and its influence to the oil/gas potential of the region. Ph.D. thesis, Faculty of Natural Sciences, Comenius University, Bratislava, p 112 (in Slovak)

  • Huismans RS, Podladchikov YY, Cloetingh S (2001) Dynamic modelling of the transition from passive to active rifting: application to the Pannonian basin. Tectonics 20:1021–1039

    Article  Google Scholar 

  • Hunt CP, Moskowitz BP (1995) Magnetic properties of rocks and minerals. In: Ahrens TJ (ed) Rock physics and phase relations: a handbook of physical constants, vol 3. American Geophysical Union, Washington, DC, pp 189–204

    Chapter  Google Scholar 

  • Kis KI, Agocs WB, Meyerhoff AA (1999) Magnetic sources from vertical magnetic anomalies. Geophys Trans 42(3–4):133–157

    Google Scholar 

  • Kiss J (2006) Bouguer anomaly maps of Hungary. Geophys Trans 45:99–104

    Google Scholar 

  • Kiss J (2009) A CEL08 szélveny geofizikai vizsgálata. Magy Geofiz 50(2):59–74 (Hungarian)

    Google Scholar 

  • Kiss J (2013) Magyarországi geomágneses adatok és feldolgozások: spektrálanalízis és térképi feldolgozások. Magyar Geofizika 54(2):89–114 (Hungarian)

    Google Scholar 

  • Kiss J, Gulyás Á (2006a) Gravity Bouguer anomaly map of Hungary, 1:500000. Eötvös Loránd Geophysical Institute of Hungary, Budapest

    Google Scholar 

  • Kiss J, Gulyás Á (2006b) Magnetic ∆Z anomaly map of Hungary, 1:500000. Eötvös Loránd Geophysical Institute of Hungary, Budapest

    Google Scholar 

  • Kiss J, Szarka L, Prácser E (2005) Second-order magnetic phase transition in the Earth. Geophys Res Lett 32:L24310

    Article  Google Scholar 

  • Klébesz R, Harangi S, Ntaflos T (2009) Petrogenesis of the ultrapotassic trachyandesite at Balatonmária. Foldtani Kozlony 139(3):237–250 (Hungarian)

    Google Scholar 

  • Konecný V, Kovác M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho–Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123

    Article  Google Scholar 

  • Kőrössy L (1987) Hydrocarbon geology of the Little Plain in Hungary. Általános Földtani Szemle 22:99–174 (Hungarian with English summary)

    Google Scholar 

  • Kovács I, Falus G, Stuart G, Hidas K, Szabó C, Flower MFJ, Hegedűs E, Posgay K, Zilahi-Sebess L (2012) Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics 514–517:168–179

    Article  Google Scholar 

  • Kronome B, Baráth I, Nagy A, Uhrin A, Maros D, Berka R, Černák R (2014) Geological model of the Danube Basin: transboundary correlation of geological and geophysical data. Slov Geol Mag 14(2):17–35

    Google Scholar 

  • Lankreijer A (1998) Rheology and basement control on extensional basin evolution in Central and Eastern Europe: variscan and Alpine Carpathian–Pannonian tectonics. Vrije Universiteit, Faculty of Earth Sciences, Amsterdam, p 158

    Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2016) Arrested diatreme development: Standing Rocks East, Hopi Buttes, Navajo Nation, USA. J Volcanol Geotherm Res 310:186–208

    Article  Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL. (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. In: Cloething SAPL, Horváth F, Bada G, Lankreier AC (eds) Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System. EGU Stephan Mueller Special Publication Series 3, pp 29–40

  • Lillie R, Bielik M, Babuška V, Plomerová J (1994) Gravity modeling of the lithosphere in the Eastern Alpine-Western Carpathian–Pannonian region. Tectonophysics 231(4):215–235

    Article  Google Scholar 

  • Lindner H, Gabriel G, Götze H-J, Kaeppler R, Suhr P (2006) Geophysical and geological investigation of maar structures in the Upper Lusatia region (East Saxony). Z dt Ges Geowiss 157(3):355–372

    Google Scholar 

  • Lorenz V (2003) Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. GeoLines 15:72–83

    Google Scholar 

  • Maros D, Maigut V (eds) (2011) Pre-Cenozoic model horizon grid for Supra-Regional Area. In: Enclosure 1.15. 1:500000. Towards sustainable cross-border geothermal energy utilization. Transenergy—transboundary geothermal energy resources of Slovenia, Austria

  • Martin U, Németh K (2004) Mio/Pliocene phreatomagmatic volcanism in the Little Hungarian Plain Volcanic Field (Hungary) and the western margin of the Pannonian Basin (Austria, Slovenia). In: Budai T (ed) Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin. Geologica Hungarica Series Geologica, Geological Institute of Hungary, Budapest, pp 153–184

    Google Scholar 

  • Martin U, Németh K (2005) Eruptive and depositional history of a Pliocene tuff ring that developed in a fluvio-lacustrine basin: Kissomlyó volcano (western Hungary. J Volcanol Geotherm Res 147(3–4):342–356

    Article  Google Scholar 

  • Martin U, Németh K (2007) Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary. J Volcanol Geotherm Res 159(1):164–178

    Article  Google Scholar 

  • Matenco L, Radivojević D (2012) On the formation and evolution of the Pannonian Basin: Constraints derived from the structure of the junction area between the Carpathians and Dinarides. Tectonics 31(6):TC6007

    Article  Google Scholar 

  • Mathieu L, Van Wyk de Vries B (2011) The impact of strike-slip, transtensional and transpressional fault zones on volcanoes. Part 1: Scaled experiments. J Struct Geol 33(5):907–917

    Article  Google Scholar 

  • Matthes H, Kroner C, Jahr T, Kämpf H (2010) Geophysical modelling of the Ebersbrunn diatreme, western Saxony, Germany. Near Surf Geophys 8(4):311–319

    Google Scholar 

  • Mattick RE, Teleki PG, Phillips RL, Clayton JL, Dávid G, Pogácsás G, Bardócz B, Simon E (1996) Structure, stratigraphy and petroleum geology of the Little Plain Basin, Northwestern Hungary. AAPG Bull 80:1780–1800

    Google Scholar 

  • McLean CE, Brown DJ, Rawcliffe HJ (2016) Extensive soft-sediment deformation and peperite formation at the base of a rhyolite lava: Owyhee Mountains, SW Idaho, USA. Bull Volcanol 78(6):42

    Article  Google Scholar 

  • Mészáros F, Zilahi-Sebes L (2001) Compaction of sediments with great thickness in the Pannonian Basin. Geophys Trans 44:21–48

    Google Scholar 

  • Nemesi L, Hobot J, Kovácsvölgyi S, Milánkovich A, Pápa A, Stomfai R, Varga G (1994) A kisalföldi medence aljzatának és kérengszerkezetének kutatása az ELGI-ben 1982–90 között. Geophys Trans 39:193–223 (Hugarian)

    Google Scholar 

  • Németh K (2012) An overview of the monogenetic volcanic fields of the Western Pannonian Basin: Their field characteristics and outlook for future research from a global perspective. In: Stoppa F (ed) Updates in volcanology—a comprehensive approach to volcanological problems. InTech Europe, Rijeka, pp 27–52

    Google Scholar 

  • Németh K, Martin U (1999) Late Miocene paleo-geomorphology of the Bakony–Balaton Highland volcanic field (Hungary) using physical volcanology data. Z Geomorphol 43(4):417–438

    Google Scholar 

  • Németh K, Martin U, Harangi Sz (2001) Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary). J Volcanol Geotherm Res 111(1–4):111–135

    Article  Google Scholar 

  • Németh K, Pécskay Z, Martin U, Gméling K, Molnár F, Cronin SJ (2008) Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. Geol Soc Lond Spec Publ 302:63–86

    Article  Google Scholar 

  • Novák A, Klébesz R, Szabó C, Wesztergom V, Patkó L, Liptai N, Ádam A, Semenov VY, Lemperger I, Kis A, Gribovszki K (2014) Combined geophysical (magnetotellurics) and geochemical results for determination of the Lithosphere-Asthenosphere Boundary (LAB) beneath the Nógrád–Gömör volcanic field. 22nd EM induction workshop, Weimar, Germany, p 4

  • Pašteka R, Hronček S, Ihring P, Bošanský M, Putiška R (2015) Concave and convex features analysis of Bouguer gravity field with following qualitative interpretation. 77th EAGE conference and exhibition, IFEMA, Madrid, Spain, extended abstract, p 5

  • Pécskay Z, Lexa J, Szakács A, Seghedi I, Balogh K, Konečný V, Zelenka T, Kovacs M, Póka T, Fülöp A, Márton E, Panaiotu C, Cvetković V (2006) Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol Carpath 57(6):511–530

    Google Scholar 

  • Petronis MS, Delcamp A, Van Wyk De Vries B (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and paleomagnetic data. Bull Volcanol 75:753

    Article  Google Scholar 

  • Planke S, Rasmussen T, Rey SS, Myklebust R (2005) Seismic characteristics and distribution of volcanic intrusions and hydrothermal vent complexes in the Vøring and Mørebasins. In: Dore AG, Vining BA (eds) Petroleum geology: North-West Europe and global perspectives—Proceedings of the 6th petroleum geology conference, vol 6. Petroleum Geology Conferences Ltd., London, Geological Society, pp 833–844

  • Reynisson RF, Ebbing J, Skilbrei JR (2009) The use of potential field data in revealing the basement structure in sub-basaltic settings: an example from the Møre margin, offshore Norway. Geophys Prospect 57:753–771

    Article  Google Scholar 

  • Rollet N, Déverchère J, Beslier MO, Guennoc P, Réhault JP, Sosson M, Truffert C (2002) Back-arc extension, tectonic inheritance, and volcanism in the Ligurian Sea, western Mediterranean. Tectonics 21(3): 6–1-6–23

  • Schléder Z (2001) Pásztori kornyéki fúrasok miocén vulkáni kőzettani és geokémiai vizsgálata. M.Sc. thesis, Eötvös Loránd University, Budapest (in Hugarian)

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Schmidt S, Plonka C, Götze H-J, Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 59(6):1046–1051

    Article  Google Scholar 

  • Schmidt S, Barrio-Alvers L, Götze H-J (2015) IGMAS+: Interactive Geophysical Modelling ASistant. Software tutorial, http://www.potentialgs.com, p. 59

  • Seghedi I, Downes H, Szakács A, Mason PRD, Thirlwall MF, Roşu E, Pácskay Z, Márton E, Panaiotu C (2004) Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos 72:117–146

    Article  Google Scholar 

  • Spitzer R, White RS, Team iSimm (2005) Advances in seismic imaging through basalts: a case study from the Faroe–Shetland Basin. Pet Geosci 11:147–156

    Article  Google Scholar 

  • Szabó Z, Páncsics Z (1999) Rock densities in the Pannonia basin—Hungary. Geophys Trans 42:5–27

    Google Scholar 

  • Szafián P, Tari G, Horváth F, Cloetingh S (1999) Crustal structure of the Alpine–Pannonian transition zone: a combined seismic and gravity study. Int J Earth Sci (Geol Rundsch) 88:98–110

    Article  Google Scholar 

  • Sztanó O, Kováč M, Magyar I, Šujan M, Fodor L, Uhrin A, Rybár S, Csillag G, Tőkés L (2016) Late Miocene sedimentary record of the Danube/Kisalföld Basin: interregional correlation of depositional systems, stratigraphy and structural evolution. Geol Carpath 67:525–542

    Article  Google Scholar 

  • Tari G (1996) Neoalpine tectonics of the Danube Basin (NW Pannonian Basin, Hungary). In: Ziegler PA, Horváth F (eds) Peri-Tethys memoir 2: structure and prospects of alpine basins and forelands, vol 2. Mém Mus natn Hist nat, Paris, pp 439–454

  • Tari G, Horváth F (2006) Alpine evolution and hydrocarbon geology of the Pannonian Basin: an overview. In: Golonka J, Picha FJ (eds), The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir 84, Chap. 19, 605–618

    Google Scholar 

  • Tari G, Dovenyi P, Dunkl I, Horvath F, Lenkey L, Stefanescu M, Szafian P, Toth T (1999) Lithospheric structure of the Pannonian basin derived from seismic, gravity and geothermal data. In: Durand B, Jolivet L, Horvath F, Serrane M (eds), The Mediterranean basins: extension within the Alpine Orogen, vol 156. Geological Society (London) Special Publication, London, pp 215–250

    Google Scholar 

  • Tóth C (1994) Geophysical investigation of tuff rings in the Kemeneshát. Geophys Trans 39:161–191 (Hugarian)

    Google Scholar 

  • Tschirhart V, Pehrsson SJ (2016) New insights from geophysical data on the regional structure and geometry of the southwest Thelon Basin and its basement, Northwest Territories, Canada. Geophysics 81(5):B167–B178

    Article  Google Scholar 

  • Valentine GA, Hirano N (2010) Mechanisms of low-flux intraplate volcanic fields—basin and range (North America) and northwest Pacific Ocean. Geology 38(1):55–58

    Article  Google Scholar 

  • Valentine GA, Perry FV (2007) Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA). Earth Planet Sci Lett 261(1):201–216

    Article  Google Scholar 

  • van den Hove JC, Ailleres L, Betts PG, Cas RAF (2015) Subsurface structure of a large basaltic maar volcano examined using geologically constrained potential field modelling, Lake Purrumbete Maar, Newer Volcanics Province, southeastern Australia. J Volcanol Geotherm Res 304:142–159

    Article  Google Scholar 

  • Wamalwa AM, Mickus KL, Serpa LF (2013) Geophysical characterization of the Menengai volcano, Central Kenya Rift from the analysis of magnetotelluric and gravity data. Case Hist Geophys 78(4):B187–B199

    Google Scholar 

  • Wijbrans J, Németh K, Martin U, Balogh K (2007) 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian basin, Hungary. J Volcanol Geotherm Res 164:193–204

    Article  Google Scholar 

  • Zelenka T, Balázs E, Balogh K, Kiss J, Kozák M, Nemesi L, Pécskay Z, Püspöki Z, Cs R, Széky-Fux V, Újfalussy A (2004) Buried Neogene volcanic structures in Hungary. Acta Geol Hung 47(2–3):177–219

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contracts nos. APVV-16-0146 and APVV-16-0482, partially by the VEGA Slovak Grant Agency under projects nos. 1/0141/15 and 2/0042/15. Contribution from Hungarian National Fund OTKA 109255K is also appreciated, supported through the New National Excellence Program of the Ministry of Human Capacities (Hungary).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslava Pánisová.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pánisová, J., Balázs, A., Zalai, Z. et al. Intraplate volcanism in the Danube Basin of NW Hungary: 3D geophysical modelling of the Late Miocene Pásztori volcano. Int J Earth Sci (Geol Rundsch) 107, 1713–1730 (2018). https://doi.org/10.1007/s00531-017-1567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1567-5

Keywords

Navigation