Skip to main content
Log in

High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of ~ 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites predate the alkali basalts and hawaiites, suggesting an overall temporal evolution towards less SiO2-undersaturated primary melts and increasing degrees of melting over time. The peak in alkali basaltic to hawaiitic magmatism slightly post dates the flare-up of genetically related felsic magmatism, by no more than ~ 1 Ma. This is consistent with a model in which the magmatic plumbing system erupted successively from upper to lower levels, i.e. from more evolved to more primitive compositions. One young age for a basanitic sample suggests that silica saturation decreased again towards the end of volcanic activity. This chronology of volcanic events is in good agreement with previous models, suggesting continuous lithospheric thinning beneath the SVF as a response to an extensional regime and asthenospheric uplift in the northern alpine realm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Buchmann and Connolly 2007); LRE lower rhine embayment, SVF Siebengebirge volcanic field, WW Westerwald, HG Hessian Grabens, VB Vogelsberg, RH Rhön, EG Eger Graben, UR Urach, KS Kaiserstuhl, URG upper Rhine Graben, BG Bresse Graben, LG Limagne Graben. b Map of the central part of the Siebengebirge volcanic field with selected location names and new 40Ar/39Ar ages (in Ma, errors are 1σ). Note the prevailing occurrence of differentiated volcanic rocks. The age of the Godesburg basanite is from Linthout et al. (2009)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abratis M, Mädler J, Hautmann S, Leyk H-J, Meyer R, Lippolt HJ, Vierek-Götte L (2007) Two distinct Miocene age ranges of basaltic rocks from the Rhön and Heldburg areas (Germany) based on 40Ar/39Ar step heating data. Geochem 67:133–150

    Google Scholar 

  • Babuška V, Plomerová J (1992) The lithosphere in central Europe—seismological and petrological aspects. Tectonophys 207:141–163

    Article  Google Scholar 

  • Berres F (1996) Gesteine des Siebengebirges—Entstehung-Gewinnung-Verwendung. Rheinlandia, Siegburg, Germany, p. 141

  • Blusztajn J, Hegner E (2002) Osmium isotopic systematics of melilitites from the Tertiary Central European Volcanic province in SW Germany. Chem Geol 189:91–103

    Article  Google Scholar 

  • Bogaard PJF, Wörner G (2003) Petrogenesis of basanitic to tholeiitic volcanic rocks from the Miocene Vogelsberg, Central Germany. J Petrol 44:569–602

    Article  Google Scholar 

  • Briot D, Cantagrel JM, Dupuy C, Harmon RS (1991) Geochemical evolution in crustal magma reservoirs: trace element and Sr–Nd–O isotopic variations in two continental intraplate series at Monts Dore, Massif Central, France. Chem Geol 89:281–303

    Article  Google Scholar 

  • Buchmann TJ, Connolly PT (2007) Contemporary kinematics of the Upper Rhine Graben: A 3D finite element approach. Global Planet Change 58:287–309

    Article  Google Scholar 

  • Burghardt O (1979) Siebengebirge—Landschaft im Wandel. Geol Landesamt Nordrhein-Westfalen, Krefeld, p. 65

  • Burre O, Knapp G, Vieten K (1995) Erläuterungen zu Blatt 5309 Königswinter. Geol Landesamt Nordrhein-Westfalen, Krefeld

  • Cebriá JM, Wilson M (1995) Cenozoic mafic magmatism in Central Europe: a common European Asthenospheric Reservoir? Terra Abstr 7:162

    Google Scholar 

  • Foland KA, Landoll JD, Henderson CMB, Jiangfeng C (1993) Formation of cogenetic quartz and nepheline syenites. Geochim Cosmochim Acta 57:697–704

    Article  Google Scholar 

  • Granet M, Achauer U, Wilson M (1995) Nachweis eines mantelplumes unter Frankreichs Zentralmassiv durch seismische Sondierung. Spektrum der Wissenschaft 10:28–33

    Google Scholar 

  • Haase KM, Renno AD (2008) Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe. Chem Geol 257:192–202

    Article  Google Scholar 

  • Haase KM, Goldschmidt B, Garbe-Schönberg CD (2004) Petrogenesis of tertiary continental intra-plate lavas from the Westerwald region, Germany. J Petrol 45:883–905

    Article  Google Scholar 

  • Hegner E, Walter H, Satir M (1995) Pb-Sr-Nd isotopic compositions and trace element geochemistry of megacrysts and melilitites from the Tertiary Urach volcanic field: source composition of small volume melts under SW Germany. Contrib Mineral Petrol 122:322–335

    Article  Google Scholar 

  • Hoernle K, Zhang YS, Graham D (1995) Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. Nature 374:34–39

    Article  Google Scholar 

  • Jourdan F, Mark DF, Verati C (2014) Advances in 40Ar/39Ar dating: from archaeology to planetary sciences. Special Publications, Geological Society, London, p 378

    Google Scholar 

  • Jung S, Masberg P (1998) Major- and trace-element systematics and isotope geochemistry of Cenozoic mafic volcanic rocks from the Vogelsberg (central Germany). Constraints on the origin of continental alkaline and tholeiitic basalts and their mantle sources. J Volc Geotherm Res 86:151–177

    Article  Google Scholar 

  • Jung S, Pfänder JA, Brügmann G, Stracke A (2005) Sources of primitive alkaline volcanic rocks from the central European volcanic province (Rhön, Germany) inferred from Hf, Os and Pb isotopes. Contrib Mineral Petrol 150:546–559

    Article  Google Scholar 

  • Jung C, Jung S, Hoffer E, Berndt J (2006) Petrogenesis of tertiary mafic alkaline magmas in the Hocheifel, Germany. J Petrol 47:1637–1671

    Article  Google Scholar 

  • Jung S, Vieten K, Romer R, Mezger K, Hoernes S, Satir M (2012) Petrogenesis of tertiary alkaline magmas in the Siebengebirge, Germany. J Petrol 53:2381–2409

    Article  Google Scholar 

  • Jung S, Mezger K, Hauff F, Pack A, Hoernes S (2013) Petrogenesis of rift-related tephrites, phonolites and trachytes (Central European Volcanic Province, Rhön, FRG): Constraints from Sr, Nd, Pb and O isotopes. Chem Geol 354:203–215

    Article  Google Scholar 

  • Kolb M, Paulick H, Kirchenbaur M, Münker C (2012) Petrogenesis of mafic to felsic lavas from the Oligocene Siebengebirge volcanic field (Germany): implications for the origin of intracontinental volcanism in Central Europe. J Petrol 53:2349–2379

    Article  Google Scholar 

  • Kroner U, Romer RL (2013) Two plates—many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329

    Article  Google Scholar 

  • Linthout K, Paulick H, Wijbrans JR (2009) Provenance of basalt blocks from Roman sites in Vleuten-De Meern (the Netherlands) traced to the Tertiary Siebengebirge (Germany): a geoarchaeological quest using petrological and geochemical methods. Netherlands J Geosci 88:55–74

    Article  Google Scholar 

  • Loock G, Stosch H-G, Seck HA (1990) Granulite facies lower crustal xenoliths from the Eifel, West Germany: petrological and geochemical aspects. Contrib Mineral Petrol 105:25–41

    Article  Google Scholar 

  • Ludwig KR (2008) Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochron Cent Spec Pub 4:1–76

    Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth Planet Sci Lett 81:1–65

    Google Scholar 

  • Macdonald R, Davies G, Upton B, Dunkley P, Smith M, Leat P (1995) Petrogenesis of Silali volcano, Gregory Rift, Kenya. J Geol Soc 152:703–720

    Article  Google Scholar 

  • Mengel K, Sachs P, Stosch H, Wörner G, Loock G (1991) Crustal xenoliths from Cenozoic volcanic fields of West Germany: Implications for structure and composition of the continental crust. Tectonophysics 195:271–289

    Article  Google Scholar 

  • Oncken O, Winterfeld Cv, Dittmar U (1999) Accretion of a rifted passive margin: the Late Paleozoic Rhenohercynian fold and thrust belt (Middle European Variscides). Tectonics 18:75–91

    Article  Google Scholar 

  • Panter KS, Kyle PR, Smellie JL (1997) Petrogenesis of a phonolite–trachyte succession at Mount Sidley, Marie Byrd Land, Antarctica. J Petrol 38:1225–1253

    Article  Google Scholar 

  • Pfänder JA, Sperner B, Ratschbacher L, Fischer A, Meyer M, Leistner M, Schaeben H (2014) High-resolution 40Ar/39Ar dating using a mechanical sample transfer system combined with a high-temperature cell for step heating experiments and a multicollector ARGUS noble gas mass spectrometer. Geochem, Geophys Geosyst 15:2713–2726

    Article  Google Scholar 

  • Prodehl C, Glahn A, Gutscher M, Haak V (1992) Lithospheric cross sections of the European Cenozoic rift system. Tectonophysics 208:113–138

    Article  Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40 K decay constants and 40 Ar∗/40 K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367

    Article  Google Scholar 

  • Ritter JR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14

    Article  Google Scholar 

  • Rudnick RL, Goldstein SL (1990) The Pb isotopic compositions of lower crustal xenoliths and the evolution of lower crustal Pb. Earth Planet Sci Lett 98:192–207

    Article  Google Scholar 

  • Schmincke H-U, Mertes H (1979) Pliocene and Quaternary volcanic phases in the Eifel volcanic fields. Naturwissenschaften 66:614–615

    Article  Google Scholar 

  • Schmincke HU, Lorenz V, Seck HA (1983) The Quaternary Eifel Volcanic Fields. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds), Plateau uplift—the Rhenish shield—a case history. Springer, Berlin, pp 139–151

    Google Scholar 

  • Schwarz WH, Trieloff M (2007) Intercalibration of 40 Ar–39 Ar age standards NL-25, HB3gr hornblende, GA1550, SB-3, HD-B1 biotite and BMus/2 muscovite. Chem Geol 242:218–231

    Article  Google Scholar 

  • Stosch H-G, Lugmair G (1984) Evolution of the lower continental crust: granulite facies xenoliths from the Eifel, West Germany. Nature 311:368–370

    Article  Google Scholar 

  • Todt W, Lippolt HJ (1980) K-Ar age determination on Tertiary volcanic rocks: V. Siebengebirge, Siebengebirge-Graben. J Geophys 48:18–27

    Google Scholar 

  • Ulrych J, Dostal J, Adamovič J, Jelínek E, Špaček P, Hegner E, Balogh K (2011) Recurrent Cenozoic volcanic activity in the Bohemian Massif (Czech Republic). Lithos 123:133–144

    Article  Google Scholar 

  • Vieten K (1994) Vulkanismus im Tertiär und Quartär. In: von Koenigswald W, Meyer W (eds) Erdgeschichte im Rheinland – Fossilien und Gesteine aus 400 Millionen Jahren. Dr. Friedrich Pfeil-Verlag, München, pp 137–148

    Google Scholar 

  • Vieten K, Hamm H-M, Grimmeisen W (1988) Tertiärer vulkanismus des Siebengebirges. Fortschr Min Bh 66:1–42

    Google Scholar 

  • Von Gehlen K, Forkel W (1983) Tertiary Volcanism in the Westerwald Mountains. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau uplift—the Rhenish shield—a case history. Springer, Berlin, p 133

    Google Scholar 

  • Wedepohl KH (1983) Tertiary volcanism in the Northern Hessian depression. In: Fuchs K, von Gehlen K, Mälzer H, Murawski H, Semmel A (eds) Plateau uplift—the Rhenish shield—a case history. Springer, Berlin, pp 134–138

    Google Scholar 

  • Wedepohl KH, Gohn E, Hartmann G (1994) Cenozoic alkali basaltic magmas of western Germany and their products of differentiation. Contrib Mineral Petrol 115:253–278

    Article  Google Scholar 

  • Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the Vulkaan argon laserprobe. Proc Kon Ned Akad v Wetensch 98:185–218

    Google Scholar 

  • Wilson M, Downes H (1991) Tertiary—quaternary extension-related alkaline magmatism in western and central Europe. J Petrol 32:811–849

    Article  Google Scholar 

  • Wilson M, Downes H (2006) Tertiary-Quaternary intra-plate magmatism in Europe and its relationship to mantle dynamics. In: Stephenson RA, Gee D (eds) European lithosphere dynamics. Geol Soc, London Memoirs, vol 32, pp 147–166

    Google Scholar 

  • Wilson M, Downes H, Cebriá J-M (1995) Contrasting fractionation trends in coexisting continental alkaline magma series; Cantal, Massif Central, France. J Petrol 36:1729–1753

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

Download references

Acknowledgements

Comments by Stefan Jung, Jan Wijbrans and an anonymous reviewer markedly improved the manuscript and are greatly appreciated. Thanks to the ALF team in Freiberg, Anja Obst and Blanka Sperner, who supported the 40Ar/39Ar analyses. Michal Koleška and the team from the Reactor Services Division of the Nuclear Research Centre in Řež, Czech Republic, is appreciated for performing the neutron irradiation of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Przybyla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 829 KB)

Supplementary material 2 (PDF 6631 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Przybyla, T., Pfänder, J.A., Münker, C. et al. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields. Int J Earth Sci (Geol Rundsch) 107, 1465–1484 (2018). https://doi.org/10.1007/s00531-017-1553-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1553-y

Keywords

Navigation