Skip to main content
Log in

Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Avalonian rocks in northern mainland Nova Scotia are characterized by voluminous 640–600 Ma calc-alkalic to tholeiitic mafic to felsic magmas produced in a volcanic arc. However, after the cessation of arc activity, repeated episodes of felsic magmatism between ca. 580 Ma and 350 Ma are dominated by A-type geochemical characteristics. Sm–Nd isotopic data, combined with zircon saturation temperature estimates, indicate that these magmas were formed by high temperature (800–1050 °C) melting of the same anhydrous crustal source. Regional tectonic considerations indicate that A-type felsic magmatism was produced (1) at 580 Ma in a San Andreas-type strike slip setting, (2) at 495 Ma as Avalonia rifted off Gondwana, (3) at 465 and 455 in an ensialic island arc environment and (4) at 360–350 Ma during post-collisional, intra-continental strike-slip activity as Avalonia was translated dextrally along the Laurentian margin. These results attest to the importance of crustal source, rather than tectonic setting, in the generation of these A-type magmas and are an example of how additional insights are provided by comparing the geochemical and isotopic characteristics of igneous suites of different ages within the same terrane. They also suggest that the shallow crustal rocks in northern mainland Nova Scotia were not significantly detached from their lower crustal source between ca. 620 Ma and 350 Ma, a time interval that includes the separation of Avalonia from Gondwana, its drift and accretion to Laurentia as well as post-accretionary strike-slip displacement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson AJ, Wirth R, Thomas R (2008) The alteration of metamict zircon and its role in remobilization of high field-strength elements in the Georgeville Granite, Nova Scotia. Can Mineral 46:1–18

    Article  Google Scholar 

  • Annen C (2009) From plutons to magma chambers: thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet Sci Lett 284:409–416

    Article  Google Scholar 

  • Annen C, Sparks RSJ (2002) Effects of repetitive emplacement of basaltic intrusions on thermal evolution and melt generation in the crust. Earth Planet Sci Lett 203:937–955

    Article  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  Google Scholar 

  • Annen C, Blundy JD, Leuthold J, Sparks RSJ (2015) Construction and evolution of igneous bodies: towards an integrated perspective of crustal magmatism. Lithos 230:206–221

    Article  Google Scholar 

  • Archibald DB, Barr SM, Murphy JB, White CE, MacHattie TG, Escarraga EA, Hamilton MA, MacFarlane CRM (2013) Field relationships, petrography, and tectonic setting of the Ordovician West Barneys River Plutonic Suite, southern Antigonish Highlands, Nova Scotia. Can J Earth Sci 50:727–745

    Article  Google Scholar 

  • Bachmann O, Bergantz GW (2008) Rhyolites and their source mushes across tectonic settings. J Pet 49:2277–2285

    Article  Google Scholar 

  • Boehnke P, Watson EB, Trail D, Harrison TM, Schmitt AK (2013) Zircon saturation revisited. Chem Geol 351:324–334

    Article  Google Scholar 

  • Bonin B (2007) A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97:1–29

    Article  Google Scholar 

  • Clemens JD, Holloway JR, White AJR (1986) Origin of an A-type granite: experimental constraints. Am Mineral 71:317–324

    Google Scholar 

  • Cocks LRM, Torsvik TH (2002) Earth geography from 500 to 400 million years ago: a faunal and palaeomagnetic review. J Geol Soc London 159:631–644

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petr 80:189–200

    Article  Google Scholar 

  • Collins WJ, Huang HQ, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44:143–146

    Article  Google Scholar 

  • Creaser RA, Price RC, Wormald RJ (1991) A-type granites revisited: assessment of a residual-source model. Geology 19:163–166

    Article  Google Scholar 

  • Dessureau G, Piper DJW, Pe-Piper G (2000) Geochemical evolution of earliest Carboniferous continental tholeiitic basalts along a crustal-scale shear zone, southwestern Maritimes basin, eastern Canada. Lithos 50:27–50

    Article  Google Scholar 

  • Doig R, Murphy JB, Nance RD (1993) Tectonic significance of the Late Proterozoic Economy River Gneiss, Cobequid Highlands, Avalon composite terrane, Nova Scotia. Can J Earth Sci 30:474–479

    Article  Google Scholar 

  • Doig R, Murphy JB, Pe-Piper G, Piper DJW (1996) U–Pb geochronology of Late Paleozoic plutons, Cobequid Highlands, Nova Scotia, Canada: evidence for Late Devonian emplacement adjacent to the Meguma-Avalon terrane boundary. Geol J 31:179–188

    Article  Google Scholar 

  • Donohoe HV, Wallace PI (1982) Geological Map of the Cobequid Highlands, Nova Scotia. Scale 1:50,000. Halifax, Nova Scotia, Canada

  • Dostal J, Owen JV, Shellnutt JG, Keppie JD, Gerel O, Corney R (2015) Petrogenesis of the Triassic Bayan-Ulan alkaline granitic pluton in the North Gobi rift of central Mongolia: implications for the evolution of the Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt. J Asian Earth Sci 109:50–62

    Article  Google Scholar 

  • Dunning G, Barr S, Giles PS, McGregor DC, Pe-Piper G, Piper DJW (2002) Chronology of Devonian to early Carboniferous rifting and igneous activity in southern Magdalen Basin based on U–Pb (zircon) dating. Can J Earth Sci 39:1219–1237

    Article  Google Scholar 

  • Eby GN (1990) The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos 26(115):134

    Google Scholar 

  • Eby GN (1992) Chemical subdivision of A-type granitoids: petrogenetic and tectonic implications. Geology 20(641):644

    Google Scholar 

  • Escarraga E, Barr SM, Murphy JB, Hamilton MA (2012) Ordovician A-type plutons in the Antigonish Highlands, Nova Scotia. Can J Earth Sci 49:329–345

    Article  Google Scholar 

  • Frost CD, Frost BR (2011) On ferroan (A-type) granitoids: their compositional variability and modes of origin. J Petrol 52:39–53

    Article  Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Hamilton MA, Murphy JB (2004) Tectonic significance of a Llanvirn age for the Dunn Point volcanic rocks, Avalon terrane, Nova Scotia, Canada: implications for the evolution of the Iapetus and Rheic oceans. Tectonophysics 379:199–209

    Article  Google Scholar 

  • Hanchar JM, Watson EB (2003) Zircon saturation thermometry. Rev Mineral Geochem 53:89–112

    Article  Google Scholar 

  • Henderson BJ, Collins WJ, Murphy JB, Gutierrez-Alonso G (2016) Gondwanan basement terranes of the Variscan-Appalachian orogen: Baltican, Saharan and West African hafnium isotopic fingerprints in Avalonia, Iberia and the Armorican Terranes. Tectonophysics 681:278–304

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1988) The generation of granitic magmas by intrusion of basalt into continental crust. J Petrol 29:599–624

    Article  Google Scholar 

  • Hyndman R, Currie CA, Mazzotti SP (2005) Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15(2):4–10

    Article  Google Scholar 

  • Keppie JD (1982) Tectonic Map of Nova Scotia. Scale 1:500,000. Nova Scotia Department of Mines and Energy, Halifax, Nova Scotia, Canada

  • Keppie JD (1985) The Appalachian Collage. In: Gee DG, Sturt B (eds) The Caledonide orogen, Scandinavia, and related areas. Wiley, New York, pp 1217–1226

    Google Scholar 

  • Keppie JD 1989. Northern Appalachian terranes and their accretionary history. In: Dallmeyer RD (ed) Terranes in the circum-Atlantic Paleozoic orogens. Geological Society of America Special Paper 20, pp 159–192

  • Keppie JD, Dostal J, Zentilli M (1979) Early Silurian volcanic rocks at Arisaig, Nova Scotia. Can J Earth Sci 16:1635–1639

    Article  Google Scholar 

  • Keppie JD, Dallmeyer RD, Murphy JB (1990) Tectonic implications of 40Ar/39Ar hornblende ages from Late Proterozoic-Cambrian plutons in the Avalon Composite Terrane in Nova Scotia, Canada. Geol Soc Am Bull 102:516–528

    Article  Google Scholar 

  • Keppie JD, Nance RD, Fernandez-Suarez J, Storey CD, Jeffries TE, Murphy JB (2006) Detrital zircon data from the eastern Mixteca terrane, southern Mexico: evidence for an Ordovician-Mississippian continental rise and a Permo-Triassic clastic wedge adjacent to Oaxaquia. Internat Geol Rev 48:97–111

    Article  Google Scholar 

  • King PL, White AJR, Chappell BW, Allen CM (1997) Characterization of origin of aluminous A-type granites from the Lachlan fold belt, Southeastern Australia. J Petrol 38:391

    Article  Google Scholar 

  • Koukouvelas I, Pe-Piper G, Piper DJW (2002) The role of dextral transpressional faulting in the evolution of an early Carboniferous mafic-felsic plutonic and volcanic complex: Cobequid Highlands, Nova Scotia, Canada. Tectonophysics 348:219–246

    Article  Google Scholar 

  • Landenberger B, Collins WJ (1996) Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi Complex, eastern Australia. J Petrol 37:145–170

    Article  Google Scholar 

  • Landing E (2005) Early Paleozoic Avalon-Gondwana unity: an obituary-response to ‘‘Palaeontological evidence bearing on global Ordovician-Silurian continental reconstructions’’ by RA Fortey, LRM Cocks: discussion. Earth Sci Rev 69:169–175

    Article  Google Scholar 

  • Loiselle MC, Wones DR (1979) Characteristics and origin of anorogenic granites. Abstr Progr Geol Soc Am 11:468

    Google Scholar 

  • MacHattie TG (2011) Nature and setting of late Devonian-early carboniferous rare earth element mineralization in the eastern Cobequid Highlands, Nova Scotia. Mineral Resources Branch, Report of Activities 2010. NS Depart Nat Res Rep ME 2011–1:75–92

    Google Scholar 

  • MacHattie TG, White CE, Beresford V, Reid M (2014) An Update of Bedrock Mapping in the Eastern Cobequid Highlands, Northern Mainland Nova Scotia. In: Mineral Resources Branch, Report of Activities 2013. Nova Scotia Department of Natural Resources, Report ME 2014-001, pp 145–156

  • Mahdy NM, El Kalioubi BA, Wohlgemuth-Ueberwasser CC, Shalaby MH, El-Afandy AH (2015) Petrogenesis of U- and Mo-bearing A2-type granite of the Gatter batholith in the Arabian Nubian shield, northeastern Desert, Egypt; evidence for the favorability of host rocks for the origin of associated ore deposits. Ore Geol Rev 71:57–81

    Article  Google Scholar 

  • Martin RF (2006) A-type granites of crustal origin ultimately result from open-system fenitization-type reactions in an extensional environment. Lithos 91:125–136

    Article  Google Scholar 

  • Miller BV, Nance RD, Murphy JB (1995) Kinematics of the Rockland Brook Fault, Nova Scotia: implications for the interaction of the Meguma and Avalon terranes. J Geodyn 19:253–270

    Article  Google Scholar 

  • Miller CF, McDowell SM, Mapes RW (2003) Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 31:529–532

    Article  Google Scholar 

  • MacHattie TG, White, CE (2015) An Update of Bedrock Mapping in the Western Cobequid Highlands, Northern Mainland Nova Scotia. In: Geoscience and Mines Branch, Report of Activities 2014; NS Dept of Nat Res Rep ME 2015-001, pp 51–61

  • Murphy JB, Dostal J (2007) Continental mafic magmatism of different ages in the same terrane: constraints on the evolution of an enriched mantle source. Geology 35:335–338

    Article  Google Scholar 

  • Murphy JB, Nance RD (1989) A model for the evolution of the Avalonian–Cadomian belt. Geology 17:735–738

    Article  Google Scholar 

  • Murphy JB, Nance RD (2002) Sm-Nd isotopic systematics as tectonic tracers: an example from West Avalonia in the Canadian Appalachians. Earth-Sci Rev 59:77–100

    Article  Google Scholar 

  • Murphy JB, Keppie JD, Dostal J, Hynes AJ (1990) Late Precambrian Georgeville Group: A volcanic arc rift succession in the Avalon Terrane of Nova Scotia. Geol Soc Lond Spec Publ 51:383–393

    Article  Google Scholar 

  • Murphy JB, Keppie JD, Hynes AJ (1991) Geology of the Antigonish Highlands. Geol Sur Can Pap 89–10:114

    Google Scholar 

  • Murphy JB, Pe-Piper G, Keppie JD, Piper DJW (1992) Correlation of Neoproterozoic III sequences in the Avalon Composite Terrane of mainland Nova Scotia: tectonic implications. Atl Geol 28:147–153

    Article  Google Scholar 

  • Murphy JB, Keppie JD, Dostal J, Cousens BL (1996) Repeated lower crustal melting beneath the Antigonish Highlands, Avalon Composite Terrane, Nova Scotia: Nd isotopic evidence and tectonic implications. In: Nance RD, Thompson MD (eds) Avalonian and related peri-Gondwanan terranes of the circum North Atlantic, vol 304. Geological Society of America Special Paper, pp 109–120

  • Murphy JB, Keppie JD, Dostal J, Waldron JWF, Cude M-P (1996b) Geochemical and isotopic constraints on the accretion of the Avalonia in the Appalachian-Caledonide orogen: evidence from Early Silurian clastic sequences in Antigonish Highlands, Nova Scotia, Canada. Can J Earth Sci 33:379–388

    Article  Google Scholar 

  • Murphy JB, Anderson AJ, Archibald DA (1998) Postorogenic alkali feldspar granite and associated pegmatites in West Avalonia: petrology of the Neoproterozoic Georgeville pluton, Antigonish Highlands, Nova Scotia. Can J Earth Sci 35:110–120

    Article  Google Scholar 

  • Murphy JB, Strachan RA, Nance RD, Parker KD, Fowler MB (2000) Proto-Avalonia: A 1.2 to 1.0 Ga tectonothermal event and constraints for the evolution of Rodinia. Geology 28:1071–1074

    Article  Google Scholar 

  • Murphy JB, Gutierrez-Alonso G, Damian Nance R, Fernandez-Suarez J, Keppie JD, Quesada C, Strachan RA, Dostal J (2006) Origin of the Rheic Ocean: Rifting along a Neoproterozoic suture? Geology 34(5):325

    Article  Google Scholar 

  • Murphy JB, McCausland PJA, O’Brien SJ, Pisarevsky S, Hamilton MA (2008) Age, geochemistry and Sm-Nd isotopic signature of the 0.76 Ga Burin Group: compositional equivalent of Avalonian basement? Precambrian Research 165:37–48

    Article  Google Scholar 

  • Murphy JB, Waldron JWF, Kontak DJ, Pe-Piper G, Piper DJW (2011) Minas Fault Zone: Late Paleozoic history of an intra-continental orogenic transform fault in the Canadian Appalachians. J Struct Geol 33(3):312–328

    Article  Google Scholar 

  • Murphy JB, Hamilton MA, LeBlanc B (2012) Tectonic significance of Late Ordovician silicic magmatism Avalon terrane, northern Antigonish Highlands, Nova Scotia. Can J Earth Sci 49:346–358

    Article  Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D’Lemos RD, Taylor GK (1991) Tectonostratigraphic evolution of the Avalonian–Cadomian belt and the breakup of a late Precambrian Supercontinent: an interpretive review. Precambr Res 53:41–78

    Article  Google Scholar 

  • Nance RD, Murphy JB (1994) Contrasting basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian-Cadomian belt. Geology 22(7):617

    Article  Google Scholar 

  • Nance RD, Murphy JB (1996) Basement isotopic signatures and Neoproterozoic paleogeography of Avalonian-Cadomian and related terranes in the circum North Atlantic. In: Nance RD, Thompson MD (eds) Avalonian and related peri-Gondwanan terranes of the circum North Atlantic, vol 304. Geological Society of America Special Paper, pp 333–346

  • Nance RD, Murphy JB, Keppie JD (2002) Cordilleran model for the evolution of Avalonia. Tectonophys 352:11–31

    Article  Google Scholar 

  • Papoutsa A, Pe-Piper G (2014) Geochemical variation of amphiboles in A-type granites as an indicator of complex magmatic systems: Wentworth pluton, Nova Scotia, Canada. Chem Geol 384:120–134

    Article  Google Scholar 

  • Papoutsa A, Pe-Piper G, Piper DJW (2016) Systematic mineralogical diversity in A-type granitic intrusions: control of magma source and geological processes. Geol Soc Am Bull 128:487–501

    Article  Google Scholar 

  • Pearce JA (1996) A user’s guide to basaltic discrimination diagrams. In: Wyman DA (ed.) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration: Geological Association of Canada Short Course Notes 12, pp 79–113

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (1989) The upper Hadrynian Jeffers Group, Cobequid Highlands, Avalon zone of Nova Scotia: a back-arc volcanic complex. Geol Soc Amer Bull 101:364–376

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (1998) Geochemical evolution of Devonian-Carboniferous igneous rocks of the Magdalen basin, Eastern Canada: Pb and Nd isotope evidence for mantle and lower crustal sources. Can J Earth Sci 35:201–221

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW (2002) A synopsis of the geology of the Cobequid Highlands, Nova Scotia. Atlantic Geol 38:145–160

    Google Scholar 

  • Pe-Piper G, Piper DJW, Clerk SB (1991) Persistent mafic igneous activity in an A-type granite pluton, Cobequid Highlands, Nova Scotia. Can J Earth Sci 28:1058–1072

    Article  Google Scholar 

  • Pe-Piper G, Piper DJW, Koukouvelas I (1996) The Precambrian plutons of the Cobequid Highlands, Nova Scotia, Canada. In Nance RD, Thompson MD (eds) Avalonian and Related Peri-Gondwanan Terranes of the Circum-North Atlantic: Boulder, Colorado. vol 304. Geological Society of America Special Paper, pp 121–132

  • Pe-Piper G, Koukouvelas I, Piper DJW (1998) Synkinematic granite emplacement in a shear zone: the Pleasant Hills pluton, Canadian Appalachians. Geol Soc Am Bull 110:523–536

    Article  Google Scholar 

  • Pe-Piper G, Reynolds PH, Nearing J, Piper DJW (2004) Early Carboniferous deformation and mineralization in the Cobequid shear zone, Nova Scotia: an Ar/ Ar geochronology study. Can J Earth Sci 41(12):1425–1436

    Article  Google Scholar 

  • Piper DJW, Pe-Piper G, Loncarevic BD (1993) Devonian-Carboniferous igneous intrusions and their deformation, Cobequid Highlands, Nova Scotia. Atl Geol 29(3):219–232

    Google Scholar 

  • Piper DJW, Dessureau G, Pe-Pier G (1999) Occurrence of Early Carboniferous high-Zr rhyolites, Cobequid Highlands, Nova Scotia: temperature effect of a contemporaneous mafic magma. Can Mineral 37:619–634

    Google Scholar 

  • Prigmore JK, Butler AJ, Woodcock NH (1997) Rifting during separation of Eastern Avalonia from Gondwana: evidence from subsidence analysis. Geology 25:203–206

    Article  Google Scholar 

  • Sanchez-Garcia T, Bellido F, Quesada C (2003) Geodynamic setting and geochemical signatures of Cambrian–Ordovician rift-related igneous rocks (Ossa Morena zone, SW Iberia). Tectonophysics 365:233–255

    Article  Google Scholar 

  • Schmitt AK, Simon JI (2004) Boron isotopic variation in hydrous rhyolitic melts: a case study from Long Valley, California. Contrib Mineral Petr 146:590–605

    Article  Google Scholar 

  • Shellnutt JG, Dostal J (2015) Granodiorites of the South Mountain Batholith (Nova Scotia, Canada) derived by partial melting of Avalonia granulite rocks beneath the Meguma terrane: implications for the heat source of the Late Devonian granites of the North Appalachians. Tectonophysics 655:206–212

    Article  Google Scholar 

  • Shellnutt JG, Jahn BM, Zhou MF (2011) Crustal-derived granites in the Panzhihua region, SW China: implications for felsic magmatism in the Emeishan Large Igneous province. Lithos 123:145–157

    Article  Google Scholar 

  • Smith IEM, Chappell BW, Ward GK, Freeman RS (1977) Peralkaline rhyolites associated with andesitic arcs of the southwest Pacific. Earth Planet Sci Lett 37:230–236

    Article  Google Scholar 

  • Stampfli GM, Borel GD (2002) A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrones. Earth Planet Sci Lett 196:17–33

    Article  Google Scholar 

  • van Staal CR, Dewey JF, Mac Niocaill C, McKerrow WS (1998) The Cambrian-Silurian tectonic evolution of the Northern Appalachians and British Caledonides: history of a complex, west and southwest Pacific type segment of Iapetus. In: Blundell D, Scott AC (eds.) Lyell: the past is the key to the present. Geological Society of London Special Publication 143, pp 199–242

  • van Staal CR, Whalen JB, Valverde-Vaquero P, Zagorevski A, Rogers N (2009) Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. In: Murphy JB et al. (eds.) Ancient orogens and modern analogues. Geological Society of London Special Publication 327, pp 271–316

  • van Staal CR, Barr SM, Murphy JB (2012) Provenance and tectonic evolution of Ganderia: constraints on the evolution of the Iapetus and Rheic oceans. Geology 40:987–990

    Article  Google Scholar 

  • Waldron JWF (2004) Anatomy and evolution of a pull-apart basin, Stellarton, Nova Scotia. Geol Soc Amer Bull 116:109–127

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–188

    Article  Google Scholar 

  • Whalen JB, Currie KL, Chappell BC (1987) A-type granites: geochemical characteristics, discrimination, and petrogenesis. Contrib Mineral Petr 95:407–419

    Article  Google Scholar 

  • White CE, Archibald DB, MacHattie TG, Escarraga EA 2011. Preliminary geology of the southern Antigonish Highlands, northern mainland Nova Scotia. In: MacDonald DR (ed) Mineral Resources Branch, Report of Activities 2010. Nova Scotia Dept Natural Res Rept ME 2011-1, pp 145–164

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Xia Y, Xu X, Liu L (2016) Transition from adakitic to bimodal magmatism induced by the paleo-Pacific plate subduction and slab rollback beneath SE China: evidence from petrogenesis and tectonic setting of the dike swarms. Lithos 244:182–204

    Article  Google Scholar 

Download references

Acknowledgements

JBM acknowledges the continuing support of N.S.E.R.C. and a Hadyn Williams Fellowship at Curtin University. JGS wishes to thank the Ministry of Science and Technology (Taiwan) through grant #102-2628-M-003-001-MY4. WJC acknowledges support from a Curtin Senior Research Fellowship and ARC DP 120104004. We thank Jarda Dostal and an anonymous reviewer for constructive reviews that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brendan Murphy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murphy, J.B., Shellnutt, J.G. & Collins, W.J. Late Neoproterozoic to Carboniferous genesis of A-type magmas in Avalonia of northern Nova Scotia: repeated partial melting of anhydrous lower crust in contrasting tectonic environments. Int J Earth Sci (Geol Rundsch) 107, 587–599 (2018). https://doi.org/10.1007/s00531-017-1512-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1512-7

Keywords

Navigation