Skip to main content
Log in

Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U–Pb geochronology constraints

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Muang Xai Basin, located in northern Laos, is associated with the Simao, Vientiane, and Khorat Basins. The paleogeographic link of these basins has not been investigated in great detail; thus, the investigation presented in this study is a comprehensive analysis of petrology, whole-rock geochemistry, and detrital zircon U–Pb chronology used to characterize the provenance of the Muang Xai Basin. Results suggest that the sedimentary source includes felsic rocks from an active continental margin or continental arc with minor amounts of recycled passive continental margin sediments. Sandstones of the Muang Xai Basin contain detrital zircons with varying U–Pb peak ages. The youngest age peak of all the zircons is 103 Ma, which limits the age of the Mesozoic strata to the Late Cretaceous. Detrital zircon U–Pb and trace element data, combined with geochemical result, reveal that the pre-Ordovician zircons were derived from recycled sediments of the Yangtze Block, which are originally sourced from the Qinling Orogenic belt. This provenance is shared with coeval sediments in the Simao and Khorat Basins, while magmatic rocks of the Ailaoshan, Truong Son Belt, and Lincang terrane are responsible for zircons of 416–466 and 219–308 Ma in age. Zircons of 101–110 and 149–175 Ma in age were sourced from magmatic rocks of the southwestern South China Block and northern Vietnam. These provenance results suggest that sediments flow into the Khorat red beds was likely from the Great Simao Basin and northern Vietnam, and not directly from the Yangtze Block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Sone and Metcalfe 2008)

Fig. 2

(Modified from Department of Geology and Mine, Laos P.D.R. (DGM) 1991); b, c Lithostratigraphic column of the Late Cretaceous section in the Muang Xai Basin

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

(Modified from Carter and Bristow 2003; Wang et al. 2014). DBPF, Dien Bien Phu Fault

Similar content being viewed by others

References

  • Anh TT, Tran TH, Lan CY, Chung SL, Lo CH, Wang PL, Lee TY, Mertzman SA (2003) Geochemical and Nd–Sr isotopic constraints on the genesis of Mesozoic alkaline magmatism in the Tu Le Basin, Northern Vietnam. Geophys Res Abstr 5:02096

    Google Scholar 

  • Belousova EA, Griffin WL, O’Reilly SY (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Bhatia MR (1983) Plate-tectonics and geochemical composition of sandstones. J Geol 91:135–150

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace elements characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bock B, McLennan SM, Hanson GN (1998) Geochemistry and provenance of the middle Ordovician Austin Glen member (Normanskill formation) and the Taconian orogeny in New England. Sedimentology 45:635–655

    Article  Google Scholar 

  • Booth J, Sattayarak N (2011) Subsurface Carboniferous-Cretaceous geology of NE Thailand. In: Ridd MF, Barber AJ, Crow MJ (eds) The geology of Thailand. Geological Society, London, pp 185–222

    Google Scholar 

  • Bureau of Geology and Mineral Resources of Yunnan province (BGMRY) (1986) Geology of Salt Mine in Simao area, Yunnan. Geological Publishing House, Beijing

    Google Scholar 

  • Carter A, Bristow CS (2003) Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: a study of the Khorat Plateau Basin, eastern Thailand. Basin Res 15:271–285

    Article  Google Scholar 

  • Carter A, Moss SJ (1999) Combined detrital-zircon fission-track and U–Pb dating: a new approach to understanding hinterland evolution. Geology 27:235–238

    Article  Google Scholar 

  • Chen HH, Dobson J, Heller F, Hao J (1995) Paleomagnetic evidence for clockwise rotation of the Simao region since the Cretaceous: a consequence of India-Asia collision. Earth Planet Sci Lett 134:203–217

    Article  Google Scholar 

  • Cheng YB, Mao JW (2010) Age and geochemistry of granites in Gejiu area, Yunnan province, SW China: constraints on their petrogenesis and tectonic setting. Lithos 120:258–276

    Article  Google Scholar 

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Altas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Cox R, Lowe DR, Cullers RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochemica et Cosmochimica Acta 59:2919–2940

    Article  Google Scholar 

  • Cullen JT, Field MP, Sherrell RM (2001) Determination of trace elements in filtered suspended marine particulate material by sector field HR-ICP-MS. J Anal At Spectrom 16:1307–1312

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shale, siltstone and sandstone of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochimica et Cosmochica Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (1995) The controls on the major-element and trace-element evolution of shales, siltstones and sandstones of Ordovician to Tertiary age in theWet Mountains Region, Colorado, USA. Chem Geol 12:107–131

    Article  Google Scholar 

  • Department of Geology and Mining, Lao P.D.R. (DGM) (1991) Geological and mineral occurrence map. 1:1000000 scale. British Geological Survey and Department of Geology and Mines

  • Dickinson WR, Gehrels GE (2009) Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado Plateau Mesozoic database. Earth Planet Sci Lett 288:115–125

    Article  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Am Assoc Pet Geol Bull 63:2164–2182

    Google Scholar 

  • Dickinson WR, Beard LS, Brakenridge GR, Erjavec JL, Ferguson RC, Inman KF, Lindberg FA, Ryberg PT (1983) Provenance of North American Phanerozoic sandstones in relation to tectonic setting. N Am Phaneroz Sandstones 94:222–235

    Google Scholar 

  • Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL, Wang S (2012) Zircon U–Pb dating and the petrological and geochemical constraints on Lincang granite in Western Yunnan, China: implications for the closure of the Paleo-Tethys Ocean. J Asian Earth Sci 62:282–294

    Article  Google Scholar 

  • Dostal J, Keppie JD (2009) Geochemistry of low-grade clastic rocks in the Acatlán Complex of southern Mexico: evidence for local provenance in felsic-intermediate igneous rocks. Sediment Geol 222:241–253

    Article  Google Scholar 

  • Duan L, Meng QR, Wu G, Ma SX, Li L (2012) Detrital zircon evidence for the linkage of the South China block with Gondwanaland in early Paleozoic time. Geol Mag 149:1124–1131

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Fedo CM, Sircombe KN, Rainbird RG (2003) Detrital zircon analysis of the sedimentary record. Rev Mineral Geochem 53:277–303

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environment of the Devonian Gramscatho Basin, South Cornwall: framework mode and geochemical evidence from turbiditic sandstones. J Geol Soc London 144:531–542

    Article  Google Scholar 

  • Gehrels G (2012) Detrital zircon U–Pb geochronology: current methods and new opportunities. In: Busby C, Azor A (eds) Tectonics of sedimentary basins: recent advances. Wiley, Blackwell, pp 47–62

  • Gehrels G, Kapp P, DeCelles P, Pullen A, Blakey R, Weislogel A, Ding L, Guynn J, Martin A, McQuarrie N, Yin A (2011) Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30:TC5016. doi:10.1029/2011TC002868

    Article  Google Scholar 

  • Guo L, Liu Y, Li C, Xu W, Ye L (2009) SHRIMP zircon U–Pb geochronology and lithogeochemistry of Caledonian Granites from the Laojunshan area, southeastern Yunnan province, China: implications for the collision between the Yangtze and Cathaysia blocks. Geochem J 43:101–122

    Article  Google Scholar 

  • Han YH, Ma HZ, Yuan XL, Zhang XY, Gao DL (2011) Comprehensive composition of potash deposits in Lanping-Simao Basin and Khorat Plateau. J Salt Lake Res 19:1–7 (Chinese with English abstract)

    Google Scholar 

  • Haskin MA, Haskin LA (1966) Rare earths in European shales: a redetermination. Science 154:507–509

    Google Scholar 

  • Hite RJ, Japakasetr T (1979) Potash deposits of the Khorat Plateau, Thailand and Laos. Econ Geol 74:448–458

    Article  Google Scholar 

  • Hoang L, Wu FY, Clift PD, Wysocka A, Swierczewska A (2009) Evaluating the evolution of the Red River system based on in situ U–Pb dating and Hf isotope analysis of zircons. Geochem Geophys Geosyst 10:Q11008. doi:10.1029/2009GC002819

    Google Scholar 

  • Hoskin PWO, Schaltgger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–55

    Article  Google Scholar 

  • Hu RZ, Zhou MF (2012) Multiple Mesozoic mineralization events in South China-an introduction to the thematic issue. Mineral Deposita 47:579–588

    Article  Google Scholar 

  • Huang XL, Xu YG, Lan JB, Yang QJ, Luo ZY (2009) Neoproterozoic adakitic rocks from Mopanshan in the western Yangtze Craton: partial melts of a thickened lower crust. Lithos 112:367–381

    Article  Google Scholar 

  • Ingersoll RV, Bullard TF, Ford RL, Grimm JP, Pickle JD, Sares SW (1984) The effect of grain size on detrital modes: a test of the Gazzi-Dickinson point-counting method. J Sediment Petrol 54:103–116

    Google Scholar 

  • Jian P, Liu D (2002) U–Pb zircon dating of the Caledonian Gongbo gabbro from the Mid-Jinshajiang area, Sichuan Province. Geol Rev 48:17–21 (in Chinese with English abstract)

    Google Scholar 

  • Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM, Zhang W (2009) Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 113:767–784

    Article  Google Scholar 

  • Jiang SY, Han F, Shen JZ, Martin RP (1999) Chemical and Rb–Sr, Sm–Nd isotopic systematics of tourmaline from the Dachang Sn-polymetallic ore deposit, Guangxi Province, P.R. China. Chem Geol 157:49–67

    Article  Google Scholar 

  • Jorge RCGS, Fernandes P, Rodrigures B, Pereira Z, Oliveira JT (2013) Geochemistry and provenance of the Carboniferous Baixo Alentejo Flysch Group, South Portuguese Zone. Sediment Geol 284–285:133–148

    Article  Google Scholar 

  • Lai CK (2012) Tectonic Evolution of the Ailaoshan Fold Belt in Southwestern Yunnan, China. Ph.D Thesis University of Tasmania, Hobart, pp 1–309

  • Lease RO, Burbank DW, Gehrels GE, Wang ZC, Yuan DY (2007) Signatures of mountain building: detrital zircon U–Pb ages from northeastern Tibet. Geology 35:239–242

    Article  Google Scholar 

  • Lepvier C, Maluski H, Van Vuong N, Roques D, Axente V, Rangin C (1997) Indosinian NW-trending shear zones within the Truong Son belt (Vietnam) 40Ar–39Ar Triassic ages and Cretaceous to Cenozoic overprints. Tectonophysics 283:105–128

    Article  Google Scholar 

  • Li ZX, Zhang L, Powell CM (1995) South China in Rodinia: part of the missing link between Australia-East Antarctica and Laurentia? Geology 23:407–410

    Article  Google Scholar 

  • Li ZX, Li XH, Kinny PD, Wang J, Zhang S, Zhou H (2003) Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle super plume that broke up Rodinia. Precambrian Res 122:85–109

    Article  Google Scholar 

  • Li ZX, Li XH, Wartho JA, Clark C, Li WX, Zhang CL, Bao C (2010) Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geol Soc Am Bull 122:772–793

    Article  Google Scholar 

  • Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG, Chen HH (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257(1–2):34–43

    Article  Google Scholar 

  • Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ, Wang DB (2010a) Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths. J Petrol 51(1–2):537–571

    Article  Google Scholar 

  • Liu YS, Hu ZC, Zong KQ, Gao CG, Gao S, Xu J, Chen HH (2010b) Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chin Sci Bull 55(15):1535–1546

    Article  Google Scholar 

  • Long X, Sun M, Yuan C, Xiao W, Cai K (2008) Early Paleozoic sedimentary record of the Chinese Altai: implications for its tectonic evolution. Sediment Geol 208:88–100

    Article  Google Scholar 

  • Ludwig KR (2003) ISOPLOT 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, California, pp 1–39

    Google Scholar 

  • Maluski H, Lepvrier C, Jolivet L et al (2001) Ar–Ar and fission-track ages in the Song Chay Massif: early Triassic and Cenozoic tectonics in northern Vietnam. J Asian Earth Sci 19(1):233–248

    Article  Google Scholar 

  • McLennan SM (1989) Rare earth elements in sedimentary rocks: influence of provenance and sedimentary processes. Mineral Soc Am Rev Mineral 21:169–200

    Google Scholar 

  • McLennan SM, Taylor SR (1980) Th and U in sedimentary rocks: crustal evolution and sedimentary recycling. Nature 285:621–624

    Article  Google Scholar 

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites-crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54:2015–2050

    Article  Google Scholar 

  • McLennan SM, Hemming S, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson MJJ, Basu A (eds) Processes controlling the composition of clastic sediments. Geological Society of America Special Paper, New York, pp 21–40

    Chapter  Google Scholar 

  • McLennan SM, Taylor SR, Hemming SR (2006) Composition, differentiation, and evolution of continental crust: constrains from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 92–134

    Google Scholar 

  • Metcalfe I (2009) Late Palaeozoic and Mesozoic tectonic and palaeogeographical evolution of SE Asia. Geol Soc Lond 315:7–23

    Article  Google Scholar 

  • Metcalfe I (2011) Palaeozoic-Mesozoic history of SE Asia. In: Hall R, Cottam M, Wilson M (eds) The SE Asian gateway: history and tectonics of Australia-Asia collision. Geological Society of London Special Publications, London, pp 7–35

    Google Scholar 

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and palaeogeographi evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Article  Google Scholar 

  • Morley CK (2012) Late Cretaceous-Early Palaeogene tectonic development of SE Asia. Earth Sci Rev 115:37–75

    Article  Google Scholar 

  • Nesbit HW, Young YM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Nyakairu GWA, Koeberl V (2001) Mineralogical and chemical composition and distribution of rare earth elements in clay-rich sediments from central Uganda. Geochem J 35:13–28

    Article  Google Scholar 

  • Peng TP, Wilde SA, Wang YJ, Fan WM, Peng BX (2013) Mid-Triassic felsic igneous rocks from the southern Lancangjiang Zone, SW China: petrogenesis and implications for the evolution of Paleo-Tethys. Lithos 168–169:15–32

    Article  Google Scholar 

  • Pullen A, Kapp P, Gehrels GE, Vervoort JD, Ding L (2008) Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36:351–354

    Article  Google Scholar 

  • Qiu YM, Gao S, McNaughton NJ, Groves DI, Ling W (2000) First evidence of >3.2 Ga continental crust in the Yangtze craton of south China and its implications for Archean crustal evolution and Phanerozoic tectonics. Geology 28:11–14

    Article  Google Scholar 

  • Qu YH, (1997) On affinity of potassium bearing brine in Lanping-Simao Basin, China to those in Khorat Basin, Thailand. Geol Chem Mineral 19:81–84 (in Chinese)

    Google Scholar 

  • Qu YH, Yuan PQ, Shuai KY, Zhang Y, Cai KQ, Jia SY, Chen CD (1998) Potash-forming rules and prospect of the Lower Tertiary in the Lanping-Simao Basin, Yunnan. Geological Publishing House, Beijing, pp 1–118 (in Chinese with English abstract)

  • Racey A (2009) Mesozoic red bed sequences from SE Asia and the significance of the Khorat Group of NE Thailand. In: Buffetaut E, Cuny G, Le Loeuff J, Suteethorn V (eds) Late Palaeozoic and Mesozoic ecosystems in SE Asia. Geological Society of London Special Publications, London, pp 41–67

    Google Scholar 

  • Racey A, Goodall JGS (2009) Palynology and stratigraphy of the Mesozoic Khorat Group red bed sequences from Thailand. In: Buffetaut E, Cuny G, Le Loeuff J, Suteethorn V (eds) Late Palaeozoic and Mesozoic ecosystems in SE Asia. Geological Society of London Special Publications, London, pp 69–83

    Google Scholar 

  • Racey A, Love MA, Canham AC, Goodall JGS, Polachan S (1996) Stratigraphy and reservoir potential of the Mesozoic Khorat Group, North Eastern Thailand: part 1, stratigraphy and sedimentary evolution. J Pet Geol 18:5–39

    Article  Google Scholar 

  • Roddaz M, Viers J, Brusset S, Baby P, Boucayrand C, Herail G (2006) Controls on weathering and provenance in the Amazonian foreland basin: insights from major and trace element geochemistry of Neogene Amazonian sediments. Chem Geol 226:31–45

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Sato K, Liu YY, Zhu ZC, Yang ZY, Otofuji Y (1999) Paleomagnetic study of Middle Cretaceous rocks from Yunlong, Western Yunnan, China: evidence of southward displacement of Indochina. Earth Planet Sci Lett 165:1–15

    Article  Google Scholar 

  • Sato K, Liu YY, Wang YB, Yokoyama M, Yoshioka S, Yang ZY, Otofuji Y (2007) Paleomagnetic study of Cretaceous rocks from Pu’er, western Yunnan, China: evidence of internal deformation of the Indochina Block. Earth Planet Sci Lett 258:1–15

    Article  Google Scholar 

  • Shao J, Yang S, Li C (2012) Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: inferences from analysis of fluvial sediments. Sediment Geol 265–266:110–120

    Article  Google Scholar 

  • Shi Y, Yu JH, Santosh M (2013) Tectonic evolution of the Qinling orogenic belt, Central China: new evidence from geochemical, zircon U–Pb geochronology and Hf isotopes. Precambrian Res 231:19–60

    Article  Google Scholar 

  • Singsoupho S, Bhongsuwan T, Elming S (2014) Tectonic evaluation of the Indochina Block during Jurassic-Cretaceous from palaeomagnetic results of Mesozoic redbeds in central and southern Lao PDR. J Asian Earth Sci 92:18–35

    Article  Google Scholar 

  • Singsoupho S, Bhongsuwan T, Elming S (2015) Palaeocurrent direction estimated in Mesozoic redbeds of the Khorat Plateau, Lao PDR, Indochina Block using anisotropy of magnetic susceptibility. J Asian Earth Sci 106:1–18

    Article  Google Scholar 

  • Sone M, Metcalfe I (2008) Parallel Tethyan sutures in mainland SE Asia: new insights for Palaeo-Tethys closure. Comptes Rendus Geosci 340:166–179

    Article  Google Scholar 

  • Stokes RB, Lovatt-Smith PF, Soumphonphakdy K (1996) Timing of the Shan-Thai-Indochina collision: new evidence from the Pak Lay Foldbelt of the Lao PDR. In: Hall R, Blundell D (eds) Tectonic evolution of Southeast Asia, vol 106. Geological Society of London Special Publication, Oxford, pp 225–232

    Google Scholar 

  • Sun WH, Zhou MF, Gao JF, Yang YH, Zhao XF, Zhao JH (2009) Detrital zircon U–Pb geochronological and Lu-Hf isotopic constraints on the Precambrian magmatic and crustal evolution of the western Yangtze Block, SW China. Precambrian Res 172:99–126

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Le Dain AY, Armijo R, Cobbold P (1982) Propagating extrusion tectonics in Asia: new insights from simple experiments with plasticine. Geology 10:611–616

    Article  Google Scholar 

  • Taylor SR, McLennan S (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tong YB, Yang Z, Zheng LD, Xu YL, Wang H, Gao L, Hu XZ (2013) Internal crustal deformation in the northern part of Shan-Thai Block: new evidence from paleomagnetic results of Cretaceous and Palaeogene red beds. Tectonophysics 608:1138–1158

    Article  Google Scholar 

  • Wang J, Li ZX (2003) History of Neoproterozoic rift basins in South China: implications for Rodinia break-up. Precambrian Res 122:141–158

    Article  Google Scholar 

  • Wang XF, Metcalfe I, Jian P, He LQ, Wang CS (2000) The Jinshajiang-Ailaoshan Suture Zone, China: tectonostratigraphy, age and evolution. J Asian Earth Sci 18:675–690

    Article  Google Scholar 

  • Wang Y, Fan W, Zhao G, Ji S, Peng T (2007) Zircon U–Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Res 12:404–416

    Article  Google Scholar 

  • Wang XC, Li XH, Li WX, Li ZX, Liu Y, Yang YH, Liang XR, Tu XL (2008) The Bikou basalts in the northwestern Yangtze block, South China: remnants of 820–810 Ma continental flood basalts? Geol Soc Am Bull 120:1478–1492

    Article  Google Scholar 

  • Wang Y, Zhang A, Fan W, Zhao G, Zhang G, Zhang Y, Li F, Li S (2011) Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U–Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai domains. Lithos 127:239–260

    Article  Google Scholar 

  • Wang LJ, Yu JH, Griffin WL, O’Reilly SY (2012) Early crustal evolution in the western Yangtze Block: evidence from U–Pb and Lu-Hf isotopes on detrital zircons from sedimentary rocks. Precambrian Res 222–223:368–385

    Article  Google Scholar 

  • Wang BQ, Wang W, Chen WT, Gao JF, Zhao XF, Yan DP, Zhou MF (2013) Constraints of detrital zircon U–Pb ages and Hf isotopes on the provenance of the Triassic Yidun Group and tectonic evolution of the Yidun Terrane, Eastern Tibet. Sediment Geol 289:74–98

    Article  Google Scholar 

  • Wang LC, Liu CL, Gao X, Zhang H (2014) Provenance and paleogeography of the Late Cretaceous Mengyejing Formation, Simao Basin, southeastern Tibetan Plateau: Whole-rock geochemistry, U–Pb geochronology, and Hf isotopic constraints. Sediment Geol 304:44–58

    Article  Google Scholar 

  • Wang LC, Liu CL, Fei MM, Shen LJ, Zhang H, Zhao YJ (2015) First SHRIMP U–Pb zircon ages of the potash-bearing Mengyejing Formation, Simao Basin, southwestern Yunnan, China. Cretaceous Res 52:238–250

    Article  Google Scholar 

  • Wang SF, Mo YS, Wang C, Ye PS (2016) Paleotethyan evolution of the Indochina Block as deduced from granites in northern Laos. Gondwana Res 38:183–196

    Article  Google Scholar 

  • Weislogel AL, Graham SA, Chang EZ, Wooden JL, Gehrels GE (2010) Detrital zircon provenance from three turbidite depocenters of the Middle-Upper Triassic Songpan-Ganzi complex, central China: record of collisional tectonics, erosional exhumation, and sediment production. Geol Soc Am Bull 122:2041–2062

    Article  Google Scholar 

  • Wiedenbeck M, Alle P, Corfu F, Griffin WL, Meier M, Oberli F, Quadt AV, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Geoanal Res 19:1–23

    Article  Google Scholar 

  • Wu FY, Yang JH, Wilde SA, Liu XM, Guo JH, Zhai MG (2007) Detrital zircon U–Pb and Hf isotopic constraints on the crustal evolution of North Korea. Precambrian Res 159:155–177

    Article  Google Scholar 

  • Wu FY, Ji WQ, Liu CZ, Chung SL (2010) Detrital zircon U–Pb and Hf isotopic data from the Xigaze fore-arc basin: constraints on Transhimalayan magmatic evolution in southern Tibet. Chem Geol 271:13–25

    Article  Google Scholar 

  • Xu XS, Wu JL (1983) Potash deposits in Mengyejing, Yunnan:a study of certain characteristics, geochemistry of trace elements and genesis of the deposits. Acta Geoscientica Sinica 5:17–36 (in Chinese with English abstract)

    Google Scholar 

  • Yang J, Cawood PA, Du Y, Huang H, Huang H, Tao P (2012a) Large igneous province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China. Sediment Geol 261–262:120–131

    Article  Google Scholar 

  • Yang J, Cawood PA, Du Y, Huang H, Hu L (2012b) Detrital record of Indosinian mountain building in SW China: provenance of the Middle Triassic turbidites in the Youjiang Basin. Tectonophysics 574–575:105–117

    Article  Google Scholar 

  • Zhao JH, Zhou MF (2007) Geochemistry of Neoproterozoic mafic intrusions in the Panzhihua district (Sichuan Province, SW China): implications for subduction-related metasomatism in the upper mantle. Precambrian Res 152:27–47

    Article  Google Scholar 

  • Zhao XF, Zhou MF, Li JW, Sun M, Gao JF, Sun WH, Yang JS (2010) Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: implications for tectonic evolution of the Yangtze Block. Precambrian Res 182:57–69

    Article  Google Scholar 

  • Zhou MF, Yan DP, Wang CL, Qi L, Kennedy A (2006) Subduction-related origin of the 750 Ma Xuelongbao adakitic complex (Sichuan Province, China): implications for the tectonic setting of the giant Neoproterozoic magmatic event in South China. Earth Planet Sci Lett 248:286–300

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Key Project for Basic Research of China (Project 2011CB403007) and the National Natural Science Foundation of China (No. 41572067, 41502080). We thank Professor Hu Zhaochu of China University of Geosciences in Wuhan for his assistance with the U–Pb dating and zircon trace element analyses. We are grateful to the guest editor, Prof. Hu Xiumian, and one anonymous referee for their constructive and valuable reviews which greatly improved the manuscript. Language editing by Edanz Editing Group staff is thanked for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Licheng Wang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, L., Wei, Y. et al. Provenance and paleogeography of the Mesozoic strata in the Muang Xai Basin, northern Laos: petrology, whole-rock geochemistry, and U–Pb geochronology constraints. Int J Earth Sci (Geol Rundsch) 106, 1409–1427 (2017). https://doi.org/10.1007/s00531-017-1469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-017-1469-6

Keywords

Navigation