Skip to main content
Log in

An overview on source rocks and the petroleum system of the central Upper Rhine Graben

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The petroleum system of the Upper Rhine Graben (URG) comprises multiple reservoir rocks and four major oil families, which are represented by four distinct source rock intervals. Based on geochemical analyses of new oil samples and as a review of chemical parameter of former oil fields, numerous new oil–source rock correlations were obtained. The asymmetric graben resulted in complex migration pathways with several mixed oils as well as migration from source rocks into significantly older stratigraphic units. Oldest oils originated from Liassic black shales with the Posidonia Shale as main source rock (oil family C). Bituminous shales of the Arietenkalk-Fm. (Lias α) show also significant source rock potential representing the second major source rock interval of the Liassic sequence. Within the Tertiary sequence several source rock intervals occur. Early Tertiary coaly shales generated high wax oils that accumulated in several Tertiary as well as Mesozoic reservoirs (oil family B). The Rupelian Fish Shale acted as important source rock, especially in the northern URG (oil family D). Furthermore, early mature oils from the evaporitic-salinar Corbicula- and Lower Hydrobienschichten occur especially in the area of the Heidelberg-Mannheim-Graben (oil family A). An overview on potential source rocks in the URG is presented including the first detailed geochemical source rock characterization of Middle Eocene sediments (equivalents to the Bouxwiller-Fm.). At the base of this formation a partly very prominent sapropelic coal layer or coaly shale occurs. TOC values of 20–32 % (cuttings) and Hydrogen Index (HI) values up to 640–760 mg HC/g TOC indicate an extraordinary high source rock potential, but a highly variable lateral distribution in terms of thickness and source rock facies is also supposed. First bulk kinetic data of the sapropelic Middle Eocene coal and a coaly layer of the ‘Lymnäenmergel’ are presented and indicate oil-prone organic matter characterized by low activation energies. These sediments are considered as most important source rocks of numerous high wax oils (oil family B) in addition to the coaly source rocks from the (Lower) Pechelbronn-Schichten (Late Eocene). Migration pathways are significantly influenced by the early graben evolution. A major erosion period occurred during the latest Cretaceous. The uplift center was located in the northern URG area, resulting in SSE dipping Mesozoic strata in the central URG. During Middle Eocene times a second uplift center in the Eifel area resulted in SW-NE-directed shore lines in the central URG and contemporaneous south-southeastern depocenters during marine transgression from the south. This structural setting resulted in a major NNW-NW-directed and topography-driven migration pattern for expelled Liassic oil in the fractured Mesozoic subcrop below sealing Dogger α clays and basal Tertiary marls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Bauersachs T, Schouten S, Schwark L (2014) Characterization of the sedimentary organic matter preserved in Messel oil shale by bulk geochemistry and stable isotopes. Palaeogeogr Palaeoclimatol Palaeoecol 410(15):390–400

    Article  Google Scholar 

  • Bloos G, Dietl G, Schweigert G (2005) Der Jura Süddeutschlands in der Stratigraphischen Tabelle von Deutschland 2002. Newsl Stratigr 41(1–3):263–277

    Article  Google Scholar 

  • Blümel G, Eder M, Gerling P, Ploethner D, Ranke U, Trippler K (1989) Application of hydraulic theory in petroleum exploration. Erdöl Kohle Erdgas Petrochem 42–1:38

    Google Scholar 

  • Blumenroeder J (1962) Le Pétrole en Alsace. Abh geol Landesamt Baden-Württemberg 4:41–62

    Google Scholar 

  • Blümling P, Bernier F, Lebon P, Martin D (2007) The Excavation-damaged zone in clay formations—time-dependent behaviour and influence on performance assessment. Phys Chem Earth Parts A/B/C 32(8–14):588–599

    Article  Google Scholar 

  • Böcker J, Littke R (2014) Source rock characterisation and thermal maturity of the Rupelian Fish Shale (Bodenheim Fm./Hochberg Subfm.) in the central Upper Rhine Graben. Z Dt Ges Geowiss 165:247–274

    Google Scholar 

  • Böcker J, Littke R (2015) Thermal maturity and petroleum kitchen areas of Liassic Black Shales (Lower Jurassic) in the central Upper Rhine Graben, Germany. Int J Earth Sci (Geol Rundsch). doi:10.1007/s00531-015-1188-9

    Google Scholar 

  • Böcker J, Forster A, Littke R (2014) Modelling the hydrocarbon generation potential of source rocks in the Upper Rhine Graben, Germany. Presentation DGMK/ÖGEW conference (25.5.2014—Celle)

  • Boigk H (1981) Erdöl und Erdgas in der Bundesrepublik Deutschland. Enke Verlag, Stuttgart

    Google Scholar 

  • Bruss D (2000) Zur Herkunft der Erdöle im mittleren Oberrheingraben und ihre Bedeutung für die Rekonstruktion der Migrationsgeschichte und der Speichergesteine. Dissertation, University Erlangen-Nürnberg, Ber Forschungszentrums Jülich 3831

  • Derer CE (2003) Tectono-sedimentary evolution of the northern Upper Rhine Graben (Germany) with special regard to the early syn-rift stage. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn

  • Dèzes P, Schmid SM, Ziegler PA (2004) Evolution of the European Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with their foreland lithosphere. Tectonophysics 389:1–33

    Article  Google Scholar 

  • Dill HG, Sachsenhofer R, Grecula P, Sasvari T, Palinkas LA, Borojevic-Sostaric S, Strmic- Palinkas S, Prochaska W, Garuti G, Zaccarini F, Arbouille D, Schulz HM (2008) Fossil fuels, ore and industrial minerals. In: McCann T (ed) The geology of Central Europe. Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 1341–1449

    Google Scholar 

  • Doebl F, Teichmüller R (1979) Zur Geologie und heutigen Geothermik im mittleren Oberrhein-Graben. Fortschr Geol Rheinld Westfalen 27:1–17

    Google Scholar 

  • Eglinton G, Hamilton RJ (1963) The distribution of alkanes. In: Swain T (ed) Chem plant taxon. Academic Press, New York, pp 187–208

    Chapter  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Eisbacher GH, Fielitz W (2010) Karlsruhe und seine Region. Sammlung geologischer Führer, Band 103. Borntraeger, Stuttgart

  • Eseme E (2006) Oil shales: compaction, petroleum generation and expulsion. Dissertation, RWTH Aachen University

  • Espitalié J, Deroo G, Marquis F (1985) La pyrolyse Rock-Eval et ses applications. Revue de l‘Institut Français du Petrole 40:563–579

    Article  Google Scholar 

  • Feßmann J, Orth H (2002) Angewandte Chemie und Umwelttechnik für Ingenieure. Ecomed Verlagsgesellschaft AG & Co, KG, p 255

    Google Scholar 

  • Frimmel A (2003) Hochauflösende Untersuchungen von Biomarkern an epikontinentalen Schwarzschiefern des Unteren Toarciums (Posidonienschiefer, Lias ε) von SW-Deutschland. Dissertation, Eberhard-Karls-Universität Tübingen

  • Gamintchi A (1979) Eine vergleichende Untersuchung zur Kohlenwasserstoffgenese im Rheintalgraben (SW-Deutschland), im Moghan-Becken (NW-lran) und im Sarakhs-Gebiet (NE-Iran). Dissertation, RWTH Aachen University

  • Gawenda P (2011) Germany—overview about renewed petroleum activities. In: Wagner K (ed) AAPG-European Region Newsletter, pp 4–9

  • Genter A, Evans K, Cuenot N, Fritsch D, Sanjuan B (2010) Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). C R Geosci 342:502–516

    Article  Google Scholar 

  • Gerling P (1988) Entwicklung und Anwendung einer erdölgeologisch-geochemischen Explorationsmethode unter besonderer Berücksichtigung der Hydraulik im Pechelbronner Gebiet - Fachbericht Organisch-geochemische Untersuchungen.- BMFT-Forschungsvorhaben, 032 6476 A: 23 S.; Hannover (Bundesanstalt für Geowissenschaften und Rohstoffe)

  • Geyer OF, Gwinner MP (2011) Geologie von Baden-Württemberg [Geology of the State of Baden-Württemberg, Germany], 5th edn. Schweizerbart, Stuttgart

    Google Scholar 

  • Grimm KI, Grimm MC, Köthe A, Schindler T (2002) Der „Rupelton“(Rupelium, Oligozän) der Tongrube Bott-Eder bei Rauenberg (Oberrheingraben, Deutschland). Inst Senckenberg 237:229–253

    Google Scholar 

  • Grimm MC, Wielandt-Schuster U, Hottenrott M, Grimm KI, Radtke G (2011) Oberrheingraben. In: Deutsche Stratigraphische Kommission (ed) Stratigraphie von Deutschland IX; Tertiär, Teil 1: Oberrheingraben und benachbarte Tertiärgebiete. Schriftenr Dt Ges Geowiss 75:57–132

  • Hedberg HD (1968) Significance of high wax oils with respect to genesis of petroleum. AAPG Bull 52:736–750

    Google Scholar 

  • Heitzmann P, Bossart P (2001) Das Mont-Terri-Projekt Untersuchungen über den Opalinuston im internationalen Felslabor. Bull Angew Geol 6:183–197

    Google Scholar 

  • Hettich M (1974) Ein Vollständiges Rhät/Lias-Profil aus der Langenbrückener Senke, Baden-Württemberg (Kernbohrung Mingolsheim 1968). Geol Jahrbuch A16:75–105

    Google Scholar 

  • Hillebrand T, Leythaeuser D (1992) Reservoir geochemistry of the Stockstadt oilfield. Org Geochem 19:119–131

    Article  Google Scholar 

  • Hollerbach A (1980a) Vorkommen und Bedeutung von terpenoiden Chemofossilien in Erdölen und Sedimenten. Habilitation, RWTH Aachen, Aachen

    Google Scholar 

  • Hollerbach A (1980b) Charakteristische Kohlenwasserstoffe in Evaporaten. Erdöl Kohle Erdgas Petrochem 33:7

    Google Scholar 

  • Hollerbach A (1985) Grundlagen der organischen Geochemie. Springer, Berlin

    Book  Google Scholar 

  • Horn P, Lippolt HJ, Todt W (1972) Kalium-Argon-Altersbestimmungen an tertiären Vulkaniten des Oberrheingrabens: I Gesteinsalter. Eclogae Geol Helv 65:131–156

    Google Scholar 

  • Hunt JM (1996) Petroleum geochemistry and geology. Freeman & Co, New York, p 743

    Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Français du Pétrole 53:421–437

    Article  Google Scholar 

  • Lampe C, Schwark L (2012) Using geochemical analyses to identify a spatial maturity anomaly—an example from the Upper Rhine Graben, Germany. In: Analyzing the thermal history of sedimentary basins: methods and case studies. SEPM Spec Publ 103:187–198

  • Langford FF, Blanc-Valleron MM (1990) Interpreting rock-eval pyrolysis data using graphs of pyrolysable hydrocarbons vs. Total organic carbon. AAPG Bull 74:799–804

    Google Scholar 

  • LBEG (1952, 1953, 1954, 1956, 1957, 1958, 1959, 1960–2015) Erdöl und Erdgas in der Bundesrepublik Deutschland 2014 (Yearly report). Landesamt für Bergbau, Energie und Geologie, Hannover. – Former yearly reports with different titles, e.g. 1954: Bericht über den Erdölbohr- und Förderverlauf im Jahre 1953 in Westdeutschland. Amt für Bodenforschung, Hannover. 1980: Bericht über den Erdöl- und Erdgas- Bohr- und Förderverlauf im Jahre 1979 in der Bundesrepublik Deutschland. Niedersächsisches Landesamt für Bodenforschung (NLfB), Hannover. http://www.lbeg.niedersachsen.de/erdoel-erdgas-jahresbericht/jahresbericht-erdoel-und-erdgas-in-der-bundesrepublik-deutschland-936.html

  • Levi H (1962) Die Produktionsgeschichte der Erdöllagerstätte von Pechelbronn unter besonderer Berücksichtigung ihres bergmännischen Abbaus. Erdöl Kohle Erdgas Petrochem 15(3):169–176

    Google Scholar 

  • Leythaeuser D, Rückheim J (1989) Heterogeneity of oil composition within a reservoir as a reflection of accumulation history. Geochim Cosmochim Acta 53:2119–2123

    Article  Google Scholar 

  • Littke R, Baker DR, Rullkötter J (1997) Deposition of petroleum source rocks. In: Welte DH, Horsfield B, Baker DR (eds) Petroleum and basin evolution. Springer, Heidelberg, pp 271–333

    Chapter  Google Scholar 

  • Littke R, Urai JL, Uffmann AK, Risvanis F (2012) Reflectance of dispersed vitrinite in Palaeozoic rocks with and without cleavage: implications for burial and thermal history modeling in the Devonian of Rursee area, northern Rhenish Massif, Germany. Int J Coal Geol 89:41–50

    Article  Google Scholar 

  • Lorenz V, Lutz H (2004) Das quartäre Meerfelder Maar, das eozäne Eckfelder Maar bei Manderschied und die eozänen Flussablagerungen von Gut Heeg in der Westeifel (Exkursion E am 15. April 2004). Jber Mittl Oberrhein Geol Ver NF 86:125-185, Stuttgart. From: Steingötter K (2005) Geologie von Rheinland-Pfalz: Schweizerbart, Stuttgart, p 400

  • Lutz M, Cleintuar M (1999) Geological results of a hydrocarbon exploration campaign in the southern Upper Rhine Graben (Alsace Centrale, France). Bull Appl Geol 4:3–80

    Google Scholar 

  • Lutz H, Lorenz V, Engel T, Häfner F, Haneke J (2013) Paleogene phreatomagmatic volcanism on the western main fault of the northern Upper Rhine Graben (Kisselwörth diatreme and Nierstein-Astheim Volcanic System, Germany). Bull Volcanol 75:741

    Article  Google Scholar 

  • Mauthe G, Brink HJ, Burri P (1993) Kohlenwasserstoffvorkommen und –potential im deutschen Teil des Oberrheingrabens. Bull Vereinigung Schweiz Petrol-Geolog Ing 60(137):15–29

    Google Scholar 

  • Meier PM, Trick T, Blümling P, Volckaert G (2002) Self-healing of fractures within the EDZ at the Mont Terri rock laboratory: Results after one year of experimental work. In: Hoteit N et al (eds) Proceedings of international workshop on geomechnaics. Hydromechanical and thermohydromechanical behaviour of deep argillaceous rocks, Paris, 11–12 Oct 2000. Swets & Zeitlinger, Lisse

  • Ménillet F, Vogt H, Reichelt R et al (1979) Carte géologique France (1/50 000), feuille Bouxwiller (197) Orléans : BRGM. Notice explicative par Ménillet F, Vogt H, Boudot JP, Petry F, Thévenin A, Geissert F, Schwoerer P (1979), p 59

  • Micklich N, Hildebrandt L (2005) The Frauenweiler clay pit (“Grube Unterfeld”). Kaupia 14:113–118

    Google Scholar 

  • Nix T (2003) Untersuchung der ingenieurgeologischen Verhältnisse der Grube Messel (Darmstadt) im Hinblick auf die Langzeitstabilität der Grubenböschungen. Dissertation, TU Darmstadt

  • Pepper AS, Corvi PJ (1995) Simple kinetic models of petroleum formation. Part III: modelling an open system. Marine Petrol Geol 12:417–452

    Article  Google Scholar 

  • Peters KE, Walters CC, Moldowan M (2005a) The biomarker guide volume—biomarkers and isotopes in the environment and human history, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005b) The biomarker guide volume 2—biomarkers and isotopes in petroleum exploration and earth history. Cambridge University Press, Cambridge

    Google Scholar 

  • Plein E (1993) Vorrasuetzung und Grenzen der Bildung von Kohlenwasserstoff-Lagerstätten im Oberrheingraben. Jber Mitt Oberrhein Geol Ver NF 75:227–253

    Google Scholar 

  • Pribnow D, Schellschmidt R (2000) Thermal tracking of Upper Crustal fluid flow in the Rhine Graben. Geophys Res Lett 27:1957–1960

    Article  Google Scholar 

  • Radke M, Welte DH, Willsch H (1991) Distribution of alkylated aromatic hydrocarbons and dibenzothiophenes in rocks of the Upper Rhine Graben. Chem Geol 93:325–341

    Article  Google Scholar 

  • Rice DD (1993) Biogenic gas: controls, habitat, and resource potential. In Howell DG et al (eds) The future of erzergy gases. U.S. Geological Survey professional paper 1570. U.S. Government Printing Office, Washington, DC, pp 583–606

  • Richard A (1994) Petroleum exploration in the French Rhine Graben. In: Mascle A (ed) Hydrocarbon and petroleum geology of France. Spec Publ Europ Ass Petrol Geosci 4:361–363

  • Röhl HJ, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) Black Shales of the central European epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia Shale. In: The deposition of organic-carbon-rich sediments: models, mechanisms, and consequences. SEPM Spec Publ 82:165–189

  • Röhl HJ, Schmid-Röhl A, Oschmann W, Frimmel A, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52

    Article  Google Scholar 

  • Rückheim J (1989) Migrations- und Akkumulationsgeschichte der Erdöle des nördlichen Oberrheingrabens und deren Beziehung zur Diagenese der klastischen Speichergesteine. Dissertation, RWTH Aachen University, Ber Forschungszentrums Jülich 2307

  • Rullkötter J, Leythaeuser D, Horsfield B, Littke R, Radke M, Welte DH et al (1988) Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantization of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Org Geochem 13:847–856

    Article  Google Scholar 

  • Sachse VF, Littke R, Heim H, Kluth O, Schober J, Boutib L, Jabour H, Ferdinand Perssen F, Sindern S (2011) Petroleum source rocks of the Tarfaya Basin and adjacent areas, Morocco. Org Geochem 42(3):209–227

    Article  Google Scholar 

  • Schad A (1962a) Voraussetzungen für die Bildung von Erdöllagerstätten im Rheingraben. Abh geol Landesamt Baden-Württemberg 4:29–40

    Google Scholar 

  • Schad A (1962b) Das Erdölfeld Landau. Abh geol Landesamt Baden –Württemberg 4:81–102

    Google Scholar 

  • Schäfer P (2012) Mainzer Becken – Sammlung geologischer Führer Band 79, 2nd edn. Gebr, Bornträger

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: role of preexisting structures during rift evolution. Tectonics 21(1):1–17

    Article  Google Scholar 

  • Schwarz M, Becker A, Schäfer A (2011) Seismische Leithorizonte im nordöstlichen Saar-Nahe-Becken. Erdöl Erdgas Kohle 127(1):28–34

    Google Scholar 

  • Sittler C (1985) Les Hydrocarbures d’Alsace dans le context historique et géodynamique du fossé Rhénan [The case history of oil occurrence in the Rhine Rift Valley]. Bull Centres Rech Explor-Prod Elf-Aquitaine 9(2):335–371

    Google Scholar 

  • Sofer Z (1984) Stable carbon isotope compositions of crude oils: application to source depositional environments and petroleum alteration. AAPG Bull 68(1):31–49

    Google Scholar 

  • Sokol G, Nitsch E (2013) GeORG-Projektteam - Geopotenziale des tieferen Untergrundes im Oberrheingraben, Fachlich-Technischer Abschlussbericht des Interreg-Projekts GeORG - Teil 1-4. Herausgegeben von Landesamt für Geologie, Rohstoffe und Bergbau (RP Freiburg, Baden-Württemberg), Landesamt für Geologie und Bergbau Rheinland-Pfalz (Mainz), Bureau de recherches géologiques et minières (Orléans et Strasbourg), Abteilung Angewandte & Umweltgeologie (AUG) der Universität Basel.—Internet (PDF-Dokument: http://www.geopotenziale.eu)

  • Song J, Littke R, Weniger P, Ostertag-Henning C, Nelskamp S (2015) Shale oil potential and thermal maturity of the Lower Toarcian Posidonia Shale in NW Europe. Int J Coal Geol 151:127–153

    Article  Google Scholar 

  • STDKe (2012) Deutsche Stratigraphische Kommission (Ed; Coordination and Layout: Menning M, Hendrich A) Stratigraphic Table of Germany Compact 2012 (STDKe 2012), Potsdam (GFZ)

  • Steingötter K (2005) Geologie von Rheinland-Pfalz. Schweizerbart, Stuttgart

    Google Scholar 

  • Straub EW (1955) Über einen Fund von fraglichem Mitteleozän im Erdölfeld Stockstadt bei Darmstadt. Notizbl Hessischen Landesamtes Bodenforsch 83:220–227

    Google Scholar 

  • Straub EW (1962) Die Erdöl- und Erdgaslagerstätten in Hessen und Rheinhessen. Abh geol Landesamt Baden-Württemberg 4:123–136

    Google Scholar 

  • Summons RE, Barrow RA, Capon RJ, Hope JM, Stranger C (1993) The structure of a new C25 isoprenoid alkene biomarker from diatomaceous microbial commmunities. Aust J Chem 46:907–915

    Article  Google Scholar 

  • Villemin T, Alvarez F, Angelier J (1986) The Rhinegraben: extension, subsidence and shoulder uplift. Tectonophysics 128:47–59

    Article  Google Scholar 

  • Wang Z, Stout SA, Fingas M (2006) Forensic fingerprinting of biomarkers for oil spill characterisation and source identification. Environ Forens 7(2):105–146

    Article  Google Scholar 

  • Waples DW, Haug P, Welte DH (1974) Occurrence of a regular C25 isoprenoid hydrocarbon in Tertiary sediments representing a lagoonal-type, saline environment. Geochim Cosmochim Acta 38:381–387

    Article  Google Scholar 

  • Welte D (1979) Organisch-geochemische Untersuchungen zur Bildung von Erdöl-Kohlenwasserstoffen an Gesteinen des mittleren Oberrhein-Grabens. Fortschr Geol Rheinld Westf (Krefeld) 27:51–73

    Google Scholar 

  • Welte DH, Waples DW (1973) Über die Bevorzugung geradzahliger n-Alkane in Sedimentgesteinen. Naturwiss 60:516–517

    Article  Google Scholar 

  • Welte DH, Hagemann HW, Hollerbach A, Leythaeuser D (1975) Correlation between petroleum and source rock. Ninth world petroleum congress, Tokyo (Applied Science Publishers Ltd), pp 179–191

  • Wirth E (1962) Geschichte und wirtschaftliche Bedeutung der Erdöl- und Erdgasgewinnung in der Oberrheinebene. Abh geol Landesamt Baden-Württemberg 4:13–28

    Google Scholar 

  • Ziegler PA (1992) European Cenozoic rift system. Tectonophysics 208:91–111

    Article  Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Change 58:237–269

    Article  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude for the support and sponsoring by ENGIE E&P Deutschland GmbH (former GDF SUEZ E&P Deutschland GmbH) and Palatina GeoCon GmbH & Co. KG. In particular, we are grateful for support with respect to core samples, structural maps and access to well database. We would like to thank all geologists and geophysicists from ENGIE in Lingen for their kind support and cooperation, especially Bernd Klug, Hans-Michael Trautnitz and Frank Görisch for all their expert contribution and support for this research work. Thanks to Alexander Stock (EMR Aachen) for measuring kinetics at the GFZ in Potsdam and all employees at the EMR for their support. The authors acknowledge gratefully the constructive comments on an earlier version of the manuscript by C. Ostertag-Henning and an anonymous reviewer, which both considerably improved the manuscript. The study benefited from an unpublished internal report conducted on behalf of GDF SUEZ by BGR (Hannover), under the guidance of C. Ostertag-Henning (2008). Some results of this geochemical study are part of the compilations in Figs. 3, 4 and 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Böcker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Böcker, J., Littke, R. & Forster, A. An overview on source rocks and the petroleum system of the central Upper Rhine Graben. Int J Earth Sci (Geol Rundsch) 106, 707–742 (2017). https://doi.org/10.1007/s00531-016-1330-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-016-1330-3

Keywords

Navigation