Skip to main content

Advertisement

Log in

Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Meso- to Neoproterozoic magmatic events are widespread in the Yangtze Block. The geochronology and tectonic significance of the Shennongjia Group in the Yangtze Block are still highly controversial. An integrated geochronology and geochemistry approach provides new insights into the geochronological framework, tectonic setting, magmatic events, and basin evolution of the northern Yangtze Block. Our new precise sensitive high-resolution ion microprobe U–Pb data indicate a deposition age of 1180 ± 15 Ma for the Shicaohe Formation subalkaline basaltic tuff that is geochemically similar to modern intracontinental rift volcanic rocks. The integration of available geochemical data together with our new U–Pb ages indicates the Shicaohe Formation subalkaline basaltic tuff formed ca. 1180 in a continental rift-related setting on a passive continental margin. The Shennongjia Group is topped by the Zhengjiaya Formation volcanic sequence, indicating arc-related igneous events at 1103 Ma. The transition of the late Mesoproterozoic tectonic regime from intracontinental extension to convergence occurred between ca. 1180 and 1103 Ma in the northern Yangtze Block. Tectonic evolution in the Neoproterozoic led to accretion along the northern margin of the Yangtze Block. These results provide geochronological evidence, which is of utmost importance for reconfiguration of the chronostratigraphic framework and for promoting research on Mesoproterozoic strata in China, thereby increasing understanding of magmatic events and basin evolutionary history in the northern Yangtze Block.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bartholomew MJ, Hatcher RD Jr (2010) The Grenville orogenic cycle of southern Laurentia: unraveling sutures, rifts, and shear zones as potential piercing points for Amazonia. J S Am Earth Sci 29:4–20

    Article  Google Scholar 

  • Bohor BF, Triplehorn DM (1993) Tonsteins: altered volcanic ash layers in coal-bearing sequences, vol 285. Geological Society of America Special Paper

  • Borchardt GA, Harward ME, Schmitt RA (1971) Correlation of volcanic ash deposits by activation analysis of glass separates. Quat Res 1:247–260

    Article  Google Scholar 

  • Borchardt GA, Norgren JA, Harward ME (1973) Correlation of ash layers in peat bogs of eastern Oregon. Geol Soc Am Bull 84:3101–3108

    Article  Google Scholar 

  • Buchan KL, Ernst RE (2004) Diabase dyke swarms and related units in Canada and adjacent regions. In: Geological Survey of Canada, “A” Aeries Map. 2022A (scale 1:5 000 000) and Accompanying Booklet, Canada

  • Buchan KL, Ernst RE, Hamilton MA, Mertanen S, Pesonen LJ, Elming SÅ (2001) Rodinia: the evidence from integrated palaeomagnetism and U–Pb geochronology. Precambrian Res 110:9–32

    Article  Google Scholar 

  • Cabanis B, Lecolle M (1989) Le diagramme La/10–Y/15–Nb/8: un outil pour la discrimination des séries volcaniques et la mise en évidence des processus de melange et/ou de contamination crustale. Comptes Rendus de l’Académie des Sciences. Série II. Mécanique, physique, chimie, sciences de l’univers, sciences de la terre 309(20):2023–2029

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Chapman & Hall, London

    Book  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen & Unwin, London

    Book  Google Scholar 

  • Dalziel IWD (1991) Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift pair: evidence and implications for an Eocambrian supercontinent. Geology 19:598–601

    Article  Google Scholar 

  • Deng Q, Wang J, Wang ZJ, Wang XC, Qiu YS, Yang QX, Du QD, Cui XZ, Zhou XL (2013) Continental flood basalts of the Huashan Group, northern margin of the Yangtze block–implications for the breakup of Rodinia. Int Geol Rev 55:1865–1884

    Article  Google Scholar 

  • Dong YP, Liu XM, Santosh M, Zhang XN, Chen Q, Yang C, Yang Z (2011) Neoproterozoic subduction tectonics of the northwestern Yangtze Block in South China: constrains from zircon U–Pb geochronology and geochemistry of mafic intrusions in the Hannan Massif. Precambrian Res 189:66–90

    Article  Google Scholar 

  • Dong YP, Liu XM, Santosh M, Chen Q, Zhang XN, Li W, He DF, Zhang GW (2012) Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: constraints from zircon U–Pb geochronology and geochemistry. Precambrian Res 196–197:247–274

    Article  Google Scholar 

  • Du QD, Wang ZJ, Wang J, Qiu YS, Jiang XS, Deng Q, Yang F (2013) Geochronology and paleoenvironment of the pre-Sturtian glacial strata: evidence from the Liantuo Formation in the Nanhua rift basin of the Yangtze Block, South China. Precambrian Res 233:118–131

    Article  Google Scholar 

  • Ernst RE (2007) Large igneous provinces (LIPs) in Canada through time and their metallogenic potential. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces and exploration methods. Geological Association of Canada, Canada, Mineral Deposits Division, Special Publication 5, pp 929–937

  • Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, Berlin

    Book  Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Zhou HR, Wang ZQ (2007) SHRIMP U–Pb dating of the tuff bed in the Xiamaling Formation of the Qingbaikouan System in North China. Geol Bull China 26(3):249–255 (in Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Zhang CH, Yin CY, Shi XY, Wang ZQ, Liu YM, Liu PJ, Tang F, Song B (2008a) SHRIMP zircon ages: basis for refining the chronostratigraphic classification of the Meso- and Neo-proterozoic strata in North China old land. Acta Geosci Sin 29(3):366–376 (in Chinese with English abstract)

    Google Scholar 

  • Gao LZ, Zhang CH, Shi XY, Song B, Wang ZQ, Liu YM (2008b) Mesoproterozoic age for Xiamaling Formation in North China Plate indicated by zircon SHRIMP dating. Chin Sci Bull 53(17):2665–2671 (in Chinese with English abstract)

    Google Scholar 

  • Greentree MR, Li ZX, Li XH, Wu H (2006) Late Mesoproterozoic to earliest Neoproterozoic basin record of the Sibao orogenesis in western South China and relationship to the assembly of Rodinia. Precambrian Res 151:79–100

    Article  Google Scholar 

  • Hall A (1987) Igneous petrology. Longman, London

    Google Scholar 

  • Hanson RE, Harmer RE, Blenkinsop TG, Bullen DS, Dalziel IWD, Gose WA, Hall RP, Kampunzu AB, Key RM, Mukwakwami J, Munyanyiwa H, Pancake JA, Seidel EK, Ward SE (2006) Mesoproterozoic intraplate magmatism in the Kalahari Craton: a review. J Afr Earth Sci 46:141–167

    Article  Google Scholar 

  • Hoffman PF (1991) Did the breakout of Laurentia turn Gondwanaland inside-out? Science 252:1409–1413

    Article  Google Scholar 

  • Hoffman PF (1997) Tectonic genealogy of North America. In: Vander Pluijm BA, Marshak S (eds) Earth structure: an introduction to structural geology and tectonics. McGraw-Hill, New York, pp 459–464

    Google Scholar 

  • Huff WD (1983) Correlation of Middle Ordovician K-bentonites based on chemical fingerprinting. J Geol 91:657–669

    Article  Google Scholar 

  • Huff WD, Kolata DR (1989) Correlation of K-bentonite beds by chemical fingerprinting using multivariate statistics. In: Cross TA (ed) Quantitative dynamic stratigraphy. Prentice Hall, London, pp 567–577

    Google Scholar 

  • Huff WD, Anderson TB, Rundle CC, Odin GS (1991) Chemostratigraphy, K–Ar ages and illitization of Silurian K-bentonites from the Central Belt of the Southern Uplands–Down–Longford terrane, British Isles. J Geol Soc 148:861–868

    Article  Google Scholar 

  • Huff WD, Kolata DR, Bergström SM, Zhang YS (1996a) Large-magnitude Middle Ordovician volcanic ash falls in North America and Europe: dimensions, emplacement and post-emplacement characteristics. J Volcanol Geotherm Res 73:285–301

    Article  Google Scholar 

  • Huff WD, Morgan DJ, Rundle CC (1996b) Silurian K-bentonites of the Welsh Borderlands: geochemistry, mineralogy and K–Ar ages of illitization. British Geological Survey Technical Report WG/96/45

  • Huff WD, Bergström SM, Kolata DR, Sun H (1998) The Lower Silurian Osmundsberg K-bentonite. Part II: mineralogy, geochemistry, chemostratigraphy and tectonomagmatic significance. Geol Mag 135:15–26

    Article  Google Scholar 

  • Kolata DR, Frost JK, Huff WD (1986) K-bentonites of the Ordovician Decorah Subgroup, upper Mississippi Valley: correlation by chemical fingerprinting. Illinois State Geological Survey Circular 537

  • Kolata DR, Frost JK, Huff WD (1987) Chemical correlation applied to K-bentonite beds in the Middle Ordovician Decorah Subgroup, upper Mississippi Valley. Geology 15:208–211

    Article  Google Scholar 

  • Kolata DR, Huff WD, Bergström SM (1996) Ordovician K-bentonites of Eastern North America. Geological Society of America Special Paper, vol 313, pp 1–84

  • Königer S, Lorenz V (2002) Geochemistry, tectonomagmatic origin and chemical correlation of altered Carboniferous–Permian fallout ash tuffs in southwestern Germany. Geol Mag 139:541–558

    Article  Google Scholar 

  • Le Maitre RW (ed) (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford

    Google Scholar 

  • LeCheminant AN, Stubley MP, Heaman LM, French JE, Creaser RA (2007) 1.17 Ga mafic magmatism in the central Slave Province. In: Geological Association of Canada/Mineralogical Association of Canada Joint Annual Meeting. Yellowknife, Canada

  • Li ZX, Kinny P (2002) Grenvillian continental collision in south China: new SHRIMP U–Pb zircon results and implications for the configuration of Rodinia. Geology 30:163–166

    Article  Google Scholar 

  • Li Q, Leng J (1991) The upper Precambrian in the Shennongjia region. Science and Technology Publishing House, Tianjin (in Chinese)

    Google Scholar 

  • Li XH, Li ZX, Ge WC, Zhou HW, Li WX, Liu Y, Wingate MTD (2003) Neoproterozoic granitoids in South China: crustal melting above a mantle plume at ca. 825 Ma? Precambrian Res 122:45–83

    Article  Google Scholar 

  • Li ZX, Li XH, Li WX, Ding SJ (2008) Was Cathaysia part of Proterozoic Laurentia? New data from Hainan Island, south China. Terra Nova 20:154–164

    Article  Google Scholar 

  • Li XH, Li WX, Li ZX, Lo CH, Wang J, Ye MF, Yang YH (2009a) Amalgamation between the Yangtze and Cathaysia Blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Res 174:117–128

    Article  Google Scholar 

  • Li LM, Sun M, Xing GF, Zhao GC, Zhou MF, Chen R, Jean W (2009b) Two Late Mesozoic volcanic activities in Fujian Province, China: constraints on tectonic evolution of Southeastern China. Int Geol Rev 51:216–225

    Article  Google Scholar 

  • Li HK, Lu SN, Li HM, Sun LX, Xiang ZQ, Geng JZ, Zhou HY (2009c) Zircon and beddeleyite U–Pb precision dating of basic rock sills intruding Xiamaling Formation, North China. Geol Bull China 28(10):1396–1404 (in Chinese with English abstract)

    Google Scholar 

  • Li HK, Zhu SX, Xiang ZQ, Su WB, Lu SN, Zhou HY, Geng JZ, Li S, Yang FJ (2010) Zircon U–Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton. Acta Petrol Sin 26(7):2131–2140 (in Chinese with English abstract)

    Google Scholar 

  • Li HK, Su WB, Zhou HY, Geng JZ, Xiang ZQ, Cui YR, Liu WC, Lu SN (2011) The base age of the Changchengian System at the northern North China Craton should be younger than 1670 Ma: constraints from zircon U–Pb LA-MC-ICP-MS dating of a granite-porphyry dike in Miyun County, Beijing. Earth Sci Front 18(3):108–120 (in Chinese with English abstract)

    Google Scholar 

  • Li LM, Lin SF, Xing GF, Davis DW, Davis WJ, Xiao WJ, Yin CQ (2013a) Geochemistry and tectonic implications of late Mesoproterozoic alkaline bimodal volcanic rocks from the Tieshajie Group in the southeastern Yangtze Block, South China. Precambrian Res 230:179–192

    Article  Google Scholar 

  • Li HK, Zhang CL, Yao CY, Xiang ZQ (2013b) U–Pb zircon age and Hf isotope compositions of Mesoproterozoic sedimentary strata on the western margin of the Yangtze Massif. Sci China Ser D Earth Sci 56(4):628–639

    Article  Google Scholar 

  • Li HK, Zhang CL, Xiang ZQ, Lu SN, Zhang J, Geng JZ, Qu LS, Wang ZX (2013c) Zircon and baddeleyite U–Pb geochronology of the Shennongjia Group in the Yangtze Craton and its tectonic significance. Acta Petrol Sin 29(2):673–692 (in Chinese with English abstract)

    Google Scholar 

  • Ling WL, Gao S, Zhang BR, Li HM, Liu Y, Cheng JP (2003) Neoproterozoic tectonic evolution of the northwestern Yangtze craton, South China: implications for amalgamation and break-up of the Rodinia Supercontinent. Precambrian Res 122:111–140

    Article  Google Scholar 

  • Ling WL, Gao S, Cheng JP, Jiang LS, Yuan HL, Hu ZC (2006) Neoproterozoic magmatic events within the Yangtze continental interior and along its northern margin and their tectonic implication: constraint from the ELA-ICPMS U–Pb geochronology of zircons from the Huangling and Hannan complexes. Acta Petrol Sin 22:387–396

    Google Scholar 

  • Liu C, Mao X, Wei Y, He R, Yu J (2004) A preliminary research on stratigraphic sequence of Shennongjia Group. Resour Environ Eng 18:5–16 (in Chinese with English Abstract)

    Google Scholar 

  • Liu YS, Zong KQ, Kelemen PB, Gao S (2008a) Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem Geol 247(1–2):133–153

    Article  Google Scholar 

  • Liu XM, Gao S, DiWi CR, Ling WL (2008b) Precambrian crustal growth of Yangtze craton as revealed by detrital zircon studies. Am J Sci 308:421–468

    Article  Google Scholar 

  • Lu SN (1992) Chronology of Jixian section of middle-upper Proterozoic strata. In: Li QB, Dai JX, Liu RQ et al (eds) Symposium of research on modern geology. Nanjing University Press, Nanjing, pp 122–129 (in Chinese)

    Google Scholar 

  • Ludwig KR (2001) A user’s manual for SQUID. Version 1.02

  • Ludwig KR (2003) User’s manual for Isoplot/Ex Version 3.00

  • Moores EM (1991) Southwest US-East Antarctica (SWEAT) connection: a hypothesis. Geology 19:425–428

    Article  Google Scholar 

  • Pearce JA (1975) Basalt geochemistry used to investigate past tectonic environments on Cyprus. Tectonophysics 25:41–67

    Article  Google Scholar 

  • Pearce JA (1982) Trace element characteristics of lavas from destructive plate boundaries. In: Thorpe RS (ed) Andesites. Wiley, New York, pp 525–548

    Google Scholar 

  • Pearce JA, Cann JR (1971) Ophiolite origin investigated by discriminant analysis using Ti, Zr and Y. Earth Planet Sci Lett 12:339–349

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined usingtrace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pearce JA, Norry MJ (1979) Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib Miner Petrol 69:33–47

    Article  Google Scholar 

  • Peng SB, Kusky TM, Jiang XF, Wang L, Wang JP, Deng H (2012) Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: implications for South China’s amalgamation history with the Rodinian supercontinent. Gondwana Res 21:577–594

    Article  Google Scholar 

  • Qiu XF, Ling WL, Liu XM, Kusky TM, Berkana W, Zhang YH, Gao YJ, Lu SS, Kuang H, Liu CX (2011) Recognition of Grenvillian volcanic suite in the Shennongjia region and its tectonic significance for the South China Craton. Precambrian Res 191:101–119

    Article  Google Scholar 

  • Randle K, Goles GG, Kittleman LR (1971) Geochemical and petrological characterization of ash samples from Cascade Range volcanoes. Quat Res 1:261–282

    Article  Google Scholar 

  • Rogers JJW, Santosh M (2002) Configuration of Columbia, a Mesoproterozoic supercontinent. Gondwana Res 5:5–22

    Article  Google Scholar 

  • Santos JOS, Rizzotto G, Easton MR, Potter PE, Hartmann LA, McNaughton NJ (2002) The Sunsás Orogen in Western Amazon Craton, South America and correlation with the Grenville Orogen of Laurentia, based on U–Pb isotopic study of detrital and igneous zircons. In: Geological Society of America, 2002 Denver Annual Meeting (October 27–30, 2002), Precambrian Geology, pp 122–128

  • Santos JOS, Breemen OBV, Groves DI, Hartmann LA, Almeida ME, McNaughton NJ, Fletcher IR (2004a) Timing and evolution of multiple Paleoproterozoic magmatic arcs in the Tapajós Domain, Amazon Craton: constraints from SHRIMP and TIMS zircon, baddeleyite and titanite U–Pb geochronology. Precambrian Res 131:73–109

    Article  Google Scholar 

  • Santos JOS, Rizzotto GJ, Dietsch C, Potter PE, Easton RM (2004b) First inventory of Grenvillian rocks in South America. GSA Denver Annual Meeting (November 7–10, 2004), pp 197–212

  • Santos JOS, Rizzotto GJ, Potter PE, McNaughton NJ, Matos RS, Hartmann LA, Chemale F Jr, Quadros MES (2008) Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U–Pb geochronology. Precambrian Res 165:120–152

    Article  Google Scholar 

  • Shervais JW (1982) Ti–V plots and the petrogenesis of modern and ophiolitic lavas. Earth Planet Sci Lett 59:101–118

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Su WB, Li ZM, Shi XY, Zhou HR, Huang SJ, Liu X, Chen XY, Zhang JE, Yang HM, Jia LJ, Huff WD, Ettensohn FR (2006) K-bentonites and black/dark shales from the Wufeng-Longmaxi Fm. (Early Paleozoic, South China) and Xiamaling Fm. (Early Neoproterozoic, North China): implications for tectonic processes during two important transitions. Earth Sci Front 13:82–95 (in Chinese with English abstract)

    Google Scholar 

  • Su WB, Zhang SH, Huff WD, Li HK, Ettensohn FR, Chen XY, Yang HM, Han YG, Song B, Santosh M (2008) SHRIMP U–Pb ages of K-bentonite beds in the Xiamaling Formation: implications for revised subdivision of the Meso- to Neo-proterozoic history of the North China Craton. Gondwana Res 14(3):543–553

    Article  Google Scholar 

  • Su WB, Li HK, Warren DH, Ettensohn FR, Zhang SH, Zhou HY, Wan YS (2010) Zircon SHRIMP U–Pb ages of tuff in the Tieling Formation and their geological significance. Chin Sci Bull 55(29):3312–3323

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalt: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins, vol 42. Geological Society, London, Special Publication, pp 528–548

  • Tatsumi Y, Eggins SM (1995) Subduction zone magmatism. Blackwell Science, Cambridge

    Google Scholar 

  • Unrug R (1997) Rodinia to Gondwana: the geodynamic map of Gondwana supercontinent assembly. GSA Today 7(1):1–6

    Google Scholar 

  • Upton BGJ, Emeleus CH, Heaman LM, Goodenough KM, Finch AA (2003) Magmatism of the Mid-Proterozoic Gardar Province, South Greenland: chronology, petrogenesis and geological setting. Lithos 68:43–65

    Article  Google Scholar 

  • Wang XL, Zhou JC, Qiu JS, Gao JF (2004) Geochemistry of the Meso- to Neo-proterozoic basic–acid rocks from Hunan Province, South China: implications for the evolution of the western Jiangnan orogen. Precambrian Res 135:79–103

    Article  Google Scholar 

  • Wang XC, Li XH, Li WX, Li ZX, Liu Y, Yang YH, Liang XR, Tu XL (2008) The Bikou basalts in northwestern Yangtze Block, South China: remains of 820–810 Ma continental flood basalts. Geol Soc Am Bull 120:1478–1492

    Article  Google Scholar 

  • Wang Q, Wyman DA, Li ZX, Bao ZW, Zhao ZH, Wang YX, Jian P, Yang YH, Chen LL (2010) Petrology, geochronology and geochemistry of ca. 780 Ma A-type granites in South China: petrogenesis and implications for crustal growth during the breakup of the supercontinent Rodinia. Precambrian Res 178:185–208

    Article  Google Scholar 

  • Wang XL, Shu LS, Xing GF, Zhou JC, Tang M, Shu XJ, Qi L, Hu YH (2012) Post-orogenic extension in the eastern part of the Jiangnan orogen: evidence from ca 800–760 Ma volcanic rocks. Precambrian Res 222–223:404–423

    Article  Google Scholar 

  • Wang J, Deng Q, Wang ZJ, Qiu YS, Duan TZ, Jiang XS, Yang QX (2013) New evidences for sedimentary attributes and timing of the “Macaoyuan conglomerates” on the northern margin of the Yangtze Block in southern China. Precambrian Res 235:58–70

    Article  Google Scholar 

  • Westgate JA, Fulton JJ (1975) Tephrostratigraphy of Olympia interglacial sediments in south-central British Columbia, Canada. Can J Earth Sci 12:489–502

    Article  Google Scholar 

  • Westgate JA, Christiansen EQ, Boellstorff JD (1977) Wascana Creek Ash (Middle Pleistocene) in southern Saskatchewan: characterization, source, fission track age, paleomagnetism, and stratigraphic significance. Can J Earth Sci 14:357–374

    Article  Google Scholar 

  • Williams IS (1998) U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC, Ridley WI (eds) Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7, Society of Economic Geologists, Littleton, Special Publication, pp 1–35

  • Wilson M (1989) Igneous petrogenesis. Chapman & Hall, London

    Book  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343

    Article  Google Scholar 

  • Windley BF (1995) The evolving continents, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Xia LQ, Xia ZC, Ma ZP, Xu XY, Li XM (2009) Petrogenesis of volcanic rocks from Xixiang Group in middle part of South Qinling Mountains. Northwest Geol 42:1–37 (in Chinese with English abstract)

    Google Scholar 

  • Xu XY, Xia LQ, Chen JL, Ma ZP, Li XM, Xia ZC, Wang HL (2009) Zircon U–Pb dating and geochemical study of volcanic rocks from Sunjiahe formation of Xixiang Group in northern margin of Yangtze Plate. Acta Petrol Sin 25:3309–3326

    Google Scholar 

  • Xu XY, Chen JL, Li XM, Ma ZP, Wang HL, Xia LQ, Xia ZC, Li P (2010) Geochemistry and petrogenesis of volcanic rocks from Sanlangpu Formation and Dashigou Formation. Acta Petrol Sin 26:617–632

    Google Scholar 

  • Ye MF, Li XH, Li WX, Liu Y, Li ZX (2007) SHRIMP zircon U–Pb geochronological and whole-rock geochemical evidence for an early Neoproterozoic Sibaoan magmatic arc along the southeastern margin of the Yangtze Block. Gondwana Res 12:144–156

    Article  Google Scholar 

  • Zhang SH, Li ZX, Wu HC (2006) New Precambrian palaeomagnetic constraints on the position of the North China Block in Rodinia. Precambrian Res 144:213–238

    Article  Google Scholar 

  • Zhang SH, Zhao Y, Yang ZY, He ZF, Wu H (2009) The 1.35 Ga diabase sills from the northern North China Craton: implications for breakup of the Columbia (Nuna) supercontinent. Earth Planet Sci Lett 288:588–600

    Article  Google Scholar 

  • Zhang SH, Zhao Y, Santosh M (2012a) Mid-Mesoproterozoic bimodal magmatic rocks in the northern North China Craton: implications for magmatism related to breakup of the Columbia supercontinent. Precambrian Res 222–223:339–367

    Article  Google Scholar 

  • Zhang SH, Li ZX, Evans David AD, Wu HC, Li HY, Dong J (2012b) Pre-Rodinia supercontinent Nuna shaping up: a global synthesis with new paleomagnetic results from North China. Earth Planet Sci Lett 353–354:145–155

    Article  Google Scholar 

  • Zhao GC, Cawood PA (2012) Precambrian geology of China. Precambrian Res 222–223:13–54

    Article  Google Scholar 

  • Zhao GC, Guo JH (2012) Precambrian geology of China: preface. Precambrian Res 222–223:1–12

    Article  Google Scholar 

  • Zhao JH, Zhou MF (2009) Secular evolution of the Neoproterozoic lithospheric mantle underneath the northern margin of the Yangtze Block, South China. Lithos 107:152–168

    Article  Google Scholar 

  • Zhao GC, Cawood PA, Wilde SA, Sun M (2002) Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth Sci Rev 59:125–162

    Article  Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2004) A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth Sci Rev 67:91–123

    Article  Google Scholar 

  • Zhao FQ, Zhao WP, Zuo YC, Li ZH, Xue KQ (2006) U–Pb geochronology of Neoproterozoic magmatic rocks in Hanzhong, southern Shaanxi, China. Geol Bull China 25:383–388

    Google Scholar 

  • Zheng YF, Zhang SB (2007) Formation and evolution of Precambrian continental crust in South China. Chin Sci Bull 52:1–12

    Article  Google Scholar 

  • Zheng YF, Zhang SB, Zhao ZF, Wu YB, Li XH, Li ZX, Wu FY (2007) Contrasting zircon Hf and O isotopes in the two episodes of Neoproterozoic granitoids in South China: implications for growth and reworking of continental crust. Lithos 96:127–150

    Article  Google Scholar 

  • Zheng YF, Wu RX, Wu YB, Zhao ZF, Zhang SB, Yuan HL, Wu FY (2008) Rift melting of juvenile arc–derived crust: geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan orogen, South China. Precambrian Res 163:351–383

    Article  Google Scholar 

  • Zheng YF, Xiao WJ, Zhao GC (2012) Introduction to tectonics of China. Gondwana Res 23:1189–1206

    Article  Google Scholar 

  • Zhou MF, Kennedy AK, Sun M, Malpas J, Lesher CM (2002a) Neo-proterozoic arc related mafic intrusions in the northern margin of South China: implications for accretion of Rodinia. J Geol 110:611–618

    Article  Google Scholar 

  • Zhou MF, Yan DP, Kennedy A, Li Y, Ding J (2002b) SHRIMP U–Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67

    Article  Google Scholar 

  • Zhou MF, Ma Y, Yan DP, Xia X, Zhao JH, Sun M (2006) The Yanbian Terrane (Southern Sichuan Province SW China): a Neoproterozoic arc assemblage in the western margin of the Yangtze Block. Precambrian Res 144:19–38

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to topic editor Xiao and three reviewers for useful suggestions. This work was supported by the Natural Science Foundation for Youth (NSFY) (41302091, 41402103), the National Natural Science Foundation of China (41372124, 41072088, 41030315), and the Chinese Geological Survey (1212011121111, 121201120750).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuding Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Q., Wang, Z., Wang, J. et al. Geochronology and geochemistry of tuff beds from the Shicaohe Formation of Shennongjia Group and tectonic evolution in the northern Yangtze Block, South China. Int J Earth Sci (Geol Rundsch) 105, 521–535 (2016). https://doi.org/10.1007/s00531-015-1182-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-015-1182-2

Keywords

Navigation