Skip to main content
Log in

Fault gouge analyses: K–Ar illite dating, clay mineralogy and tectonic significance—a study from the Sierras Pampeanas, Argentina

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

We introduce a method for the detailed interpretation of K–Ar illite fine-fraction ages of fault gouges from non-sedimentary host rocks. Ages are cross-evaluated with several independent parameters, e.g. illite crystallinity, illite polytype quantification, grain size, mineralogical observations, K–Ar muscovite and biotite host-rock cooling ages as well as low-temperature thermochronological data (AFT, AHe, ZHe). This interpretation approach is applied to a regional study in order to constrain the ‘deformation path’ of the Eastern Sierras Pampeanas in NW Argentina. In the course of this study, a large number of gouge-bearing fault zones were systematically sampled and analysed. Obtained K–Ar illite fine-fraction ages range from Devonian to Cretaceous times, documenting a long-lasting brittle fault activity in this region. Ages >320 Ma are synchronous with a period of intra-Carboniferous compressional tectonism, whereas Permo-Triassic ages are contemporaneous to a flat-slab subduction episode of the Farallon plate beneath the South American plate. Middle to Late Permian and Early Triassic ages as well as Early Jurassic to Middle Cretaceous ages correlate with extensional tectonics in this region. Additionally, K–Ar illite ages reveal a propagation of brittle deformation from north to south in the Sierras de Córdoba and San Luis. Data integrity and consistency with other chronometers and geological evidence show that the here suggested interpretation is valid and can provide a powerful tool to evaluate cooling and deformation histories. Despite of that, we could show that the reliability of fault gouge data strongly depends on the regional cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abad I, Nieto F, Peacor DR, Velilla N (2003) Prograde and retrograde diagenetic and metamorphic evolution in metapelitic rocks of Sierra Espuna (Spain). Clay Miner 38(1):1–23. doi:10.1180/0009855033810074

    Article  Google Scholar 

  • Aronson JL, Burtner RL (1983) K–Ar dating of illitic clays in Jurassic Nugget Sandstone and timing of petroleum migration in Wyoming Overthrust Belt. AAPG Bull 67(3):414. doi:10.1306/03B5AD6D-16D1-11D7-8645000102C1865D

    Google Scholar 

  • Aronson JL, Lee M (1986) K–Ar systematics of bentonite and shale in a contact metamorphic zone, Cerrillos, New Mexico1. Clays Clay Miner 34(4):483–487. doi:10.1346/CCMN.1986.0340415

    Article  Google Scholar 

  • Bahlburg H, Breitkreuz C (1991) Paleozoic evolution of active margin basins in the southern central Andes (northwestern Argentina and northern Chile). J S Am Earth Sci 4(3):171–188

    Article  Google Scholar 

  • Baile SW (1966) The status of clay mineral structures. In: Proceedings of the 14th national conference on clays and clay minerals, pp 1–23

  • Bailey S, Hurley P, Fairbairn H, Pinson W (1962) K–Ar dating of sedimentary illite polytypes. Geol Soc Am Bull 73(9):1167–1170

    Article  Google Scholar 

  • Bailey SW, Frank-Kamenetskii VA, Goldsztaub S, Kato A, Pabst A, Schulz H, Taylor HFW, Fleischer M, Wilson AJC (1977) Report of the International Mineralogical Association (IMA)-International Union of Crystallography (IUCr) Joint Committee on Nomenclature. Acta Crystallog Sect A Found Crystallogr 33(4):681–684. doi:10.1107/S0567739477001703

    Article  Google Scholar 

  • Barazangi M, Isacks B (1976) Spatial distribution of earthquakes and subduction of the Nasca plate beneath South America. Geology 4:686–692

    Article  Google Scholar 

  • Bense FA, Löbens S, Dunkl I, Wemmer K, Costa CH, Siegesmund S (in review) Exhumation history and landscape evolution of the southeastern Sierras Pampeanas, Argentina—a low-temperature multichronometer approach. Int J Earth Sci Geol Rundsch

  • Bense FA, Löbens S, Dunkl I, Wemmer K, Siegesmund S (in preparation) Is the exhumation of the Sierras Pampeanas just related to Neogene flat-slab subduction? Implications from a multi- thermochronological approach

  • Brooks BA, Bevis M, Smalley RF, Jr., Kendrick E, Manceda R, Lauría E, Maturana R, Araujo M (2003) Crustal motion in the Southern Andes (26°–36°S): do the Andes behave like a microplate? Geochem Geophys Geosyst 4(10). doi:10.1029/2003GC000505

  • Chester FM, Logan JM (1986) Implications for mechanical properties of brittle faults from observations of the Punchbowl fault zone, California. Pure Appl Geophys 124:79–106

    Google Scholar 

  • Clauer N, Środoń J, Francu J, Sucha V (1997) K–Ar dating of illite fundamental particles separated from illite-smectite. Clay Miner 32(2):181–196. doi:10.1180/claymin.1997.032.2.02

    Article  Google Scholar 

  • Clauer N, Liewig N, Zwingmann H (2012) Time-constrained illitization in gas-bearing Rotliegende (Permian) sandstones from northern Germany by illite potassium-argon dating. Bulletin 96(3):519–543. doi:10.1306/07131111003

    Article  Google Scholar 

  • Costa CH (1992) Neotectónica del sur de la Sierra de San Luis. PhD thesis, Universidad Nacional de San Luis

  • Costa CH, Cortés JM (1993) Tectónica extensional en el extremo dur de la Sierra de San Luis. In: 12° Congreso Geológico Argentino, vol 3, pp 113–118

  • Costa CH, Vita-Finzi C (1996) Late Holocene faulting in the southeast Sierras Pampeanas of Argentina. Geology 24:1127–1130

    Article  Google Scholar 

  • Costa CH, Murillo VM, Sagripanti GL, Gardini CE (2001) Quaternary intraplate deformation in the southeastern Sierras Pampeanas, Argentina. J Seismol 5:399–409

    Article  Google Scholar 

  • Criado Roque P, Mombrú C, Ramos VA, Yrigoyen MR (1981) Estructura e interpretación tectónica. In: 8° Congreso Geológico Argentino, vol 155, pp 155–192

  • Dahl PS (1996) The crystal–chemical basis for Ar retention in micas: inferences from interlayer partitioning and implications for geochronology. Contributions Miner Petrol 123:22–39

    Article  Google Scholar 

  • Davis JS, Roeske SM, McClelland W, Snee LW (1999) Closing the ocean between the Precordillera terrane and Chilenia: early Devonian ophiolite emplacement and deformation in the southwest Precordillera. Geol Soc Am Special Papers 336:115–138

    Google Scholar 

  • Demange M, Alverez JO, Lopez L, Zarco JJ (1996) The Achala batholith (Cordoba, Argentina): a composite intrusion made of five independent magmatic suites. Magmatic evolution and deuteric alteration. Andean Geodynamics. J South Am Earth Sci 9(1–2):11–25. doi:10.1016/0895-9811(96)00024-7

    Article  Google Scholar 

  • Doblas M (1998) Slickenside kinematic indicators. Tectonophysics 295:187–197

    Google Scholar 

  • Fitz-Gerald JD, Harrison TM (1993) Argon diffusion domains in K-feldspar; I, microstructures in MH-10. Contrib Mineral Petrol 113:367–380

    Google Scholar 

  • Friedrich D (1991) Eine neue Methode zur Bestimmung der Illit-Kristallinität mit Hilfe digitaler Messwerterfassung. Diploma thesis, Georg-August-Universität Göttingen

  • Fuhrmann U, Lippolt HJ, Hess JC (1987) Examination of some proposed K-Ar standards: 40Ar/39Ar analyses and conventional K-Ar data. Chem Geol 66:41–51

    Google Scholar 

  • Gohrbandt KH (1992) Paleozoic paleogeographic and depositional developments on the central proto-Pacific margino of Gondwana. J S Am Earth Sci 6:267–287

    Article  Google Scholar 

  • González Bonorino F (1950) Lagunos problemas geológicas de las Sierras Pampeanas. Revista de la Asociación Geológica Argentina 5:81–110

    Google Scholar 

  • González Diaz EF (1981) Geomorfologia. In: Yrigoyen MR (ed) Geología y Recursos Naturales de la Provincia de San Luis. 8° Congreso Geológico Argentino Relatorio, pp 193–236

  • González PD, Sato AM (2000) Los plutones monzoníticos cizallados El Molle y Barroso: dos nuevos intrusivos pos- orogénicos en el oeste de las sierras de San Luis, Argentina. In: 9° Congreso Geológico Chileno, 1, pp 621–625

  • Gordillo CE, Lencinas A (1979) Sierras Pampeanas de Córdoba y San Luis. In: Turner JC (ed) Segundo Simposio de Geología Regional Argentina. Academia Nacional de Ciencias, pp 577–650

  • Grathoff GH, Moore DM (1996) Illite polytype quantification using wildfire calculated X-ray diffraction patterns. Clays Clay Miner 44(6):835–842

    Article  Google Scholar 

  • Grathoff GH, Moore DM, Hay RL, Wemmer K (1998) Illite polytype quantification and K–Ar dating of paleozoic shales: a technique to quantify. In: Schieber J, Zimmerle W, Sethi P (eds) Shales and mudstones II. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart, pp 161–175

  • Grathoff GH, Moore DM, Hay RL, Wemmer K (2001) Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations. Geol Soc Am Bull 113(8):1092–1104. doi:10.1130/0016-7606(2001)113<1092:OOIITL>2.0.CO;2

    Article  Google Scholar 

  • Grohmann CH, Campanha GAC (2010) OpenStereo: open source, cross-platform software for structural geology analysis. Presented at the AGU 2010 Fall Meeting, San Francisco, CA

  • Guinier A, Bokij GB, Boll-Dornberger K, Cowley JM, Ďurovič S, Jagodzinski H, Krishna P, de Wolff PM, Zvyagin BB, Cox DE, Goodman P, Hahn T, Kuchitsu K, Abrahams SC (1984) Nomenclature of polytype structures Report of the International Union of Crystallography ad-hoc committee on the nomenclature of disordered, modulated and polytype structures. Acta Crystallogr Sect A Found of Crystallogr 40(4):399–404. doi:10.1107/S0108767384000842

    Article  Google Scholar 

  • Haines SH, van der Pluijm BA (2008) Clay quantification and Ar–Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico. J Struct Geol 30(4):525–538. doi:10.1016/j.jsg.2007.11.012

    Article  Google Scholar 

  • Hamilton PJ, Kelly S, Fallick AE (1989) K–Ar dating of illite in hydrocarbon reservoirs. Clay Miner 24(2):215–231

    Article  Google Scholar 

  • Hamilton PJ, Giles, Ainsworth P (1992) K–Ar dating of illites in Brent Group reservoirs: a regional perspective. In: Morton AC (ed) Geology of the Brent Group, vol 61. Geological Society of London, Special Publications, pp 377–400

  • Hay RL, Lee M, Kolata D, Matthews J, Morton JP (1988) Episodic potassic diagenesis of Ordovician tuffs in the Mississippi Valley area. Geol Boulder 16(8):743–747. doi:10.1130/0091-7613(1988)016<0743:EPDOOT>2.3.CO;2

    Article  Google Scholar 

  • Hess JC, Lippolt HJ (1994) Compilation of K/Ar measurements on HD-B1 standard biotite; 1994 status report. In: Odin GS (ed) Phanerozoic Time Scale, Bulletin de Liaison et d’information. Paris, pp 19–23

  • Hodges KV (2003) Geochronology and thermochronology in orogenic systems. In: Rudnick RL (ed) Treatise on geochemistry: the crust, vol 3. Elsevier Science, Amsterdam, pp 263–292

    Chapter  Google Scholar 

  • Hoffman J, Hower J (1979) Clay mineral assemblages as low grade metamorphic geothermometers; application to the thrust faulted disturbed belt of Montana, U.S.A. Special Publication Society of Economic Paleontologists and Mineralogists 26, pp 55–79

  • Hower J, Hurley PM, Pinson WH, Fairbairn HW (1963) The dependence of K–Ar age on the mineralogy of various particle size ranges in a shale. Geochim et Cosmochim Acta 27(5):405–410. doi:10.1016/0016-7037(63)90080-2

    Article  Google Scholar 

  • Hunziker J, Frey M, Clauer N, Dallmeyer R, Friedrichsen H, Flehmig W, Hochstrasser K, Roggwiler P, Schwander H (1986) The evolution of illite to muscovite; mineralogical and isotopic data from the Glarus Alps, Switzerland. Contributions Miner Petrol 92(2):157–180

    Article  Google Scholar 

  • Introcaso A, Lion A, Ramos VA (1987) La estructura profunda de las Sierras de Córdoba. Revista de la Asociación Geológica Argentina 42:117–178

  • Jordan TE, Allmendinger RW (1986) The Sierras Pampeanas of Argentina: a modern analogue of Rockey Mountain foreland deformation. Am J Sci 286:737–764

    Article  Google Scholar 

  • Kay S, Mpodozis C, Ramos VA, Munizaga F (1991) Magma source variations for mid-late Tertiary magmatic rocks associated with a shallowing subduction zone and thickening crust in the central Andes (28–33°S). In: Harmon RS, Rapela CW (eds) Andean magmatism and its tectonic setting, vol 26. Geological Society of America Special Paper, Boulder Colorado, pp 113–137

  • Kendrick E, Brooks B, Bevis M, Smalley R, Lauria E, Araujo M, Parra H (2006) Active orogeny of the south-central Andes studied with GPS geodesy. Revista de la Asociación Geológica Argentina 61(4):555–566

    Google Scholar 

  • Kirschner DL, Hunziker JC, Cosca M (1996) Closure temperature of argon in micas; a review and reevaluation based on Alpine samples. Abstr Prog Geol Soc Am 28(7):441

    Google Scholar 

  • Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): implications for the Late Palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473(3–4):283–299. doi:10.1016/j.tecto.2009.02.046

    Article  Google Scholar 

  • Kraemer P, Tauber A, Schmidt C, Rame G (1993) Analisis cinematico de la “Falla de Nono”; evidencias de actividad neotectonica, Valle de San Alberto, Provincia de Cordoba. Translated Title: Kinematic analysis of the “Nono Fault”; evidence of neotectonic activity, San Alberto Valley, Cordoba Province. Actas del Congreso Geologico Argentino 12, 3:277–281

  • Kralik M, Klima M, Riedmüller G (1987) Dating fault gouges. Nature 327:315–317

    Article  Google Scholar 

  • Kübler B (1967) La cristallinité de l’illite et les zones tout à fait supérieures du métamorphism. Etages Tectonique, Colloque de Neuchâtel, Neuchâtel

    Google Scholar 

  • Lee J, Ahn J, Peacor DR (1985) Textures in layered silicates; progressive changes through diagenesis and low-temperature metamorphism. J Sediment Petrol 55(4):532–540. doi:10.1306/212F871F-2B24-11D7-8648000102C1865D

    Google Scholar 

  • Lencinas A, Timonieri A (1968) Algunas caractersticas estructurales del valle de Punilla, Cordoba. Translated Title: Structural characteristics of Punilla valley, Cordoba. Actas de las Jornadas Geologicas Argentinas 1:195–207

  • Löbens S, Bense FA, Dunkl I, Wemmer K, Siegesmund S (in preparation) Thermochronological constraints of the exhumation and uplift of the Sierra de Pie de Palo, NW Argentina

  • Löbens S, Bense FA, Wemmer K, Dunkl I, Costa CH, Layer P, Siegesmund S (2011) Exhumation and uplift of the Sierras Pampeanas: preliminary implications from K–Ar fault gouge dating and low-T thermochronology in the Sierra de Comechingones (Argentina). Int J Earth Sci 100(2–3):671–694. doi:10.1007/s00531-010-0608-0

    Article  Google Scholar 

  • Lonker SW, Fitz Gerald JD (1990) Formation of coexisting 1M and 2M polytypes in illite from an active hydrothermal system. Am Miner 75:1282–1289

    Google Scholar 

  • Lucero Michaut NH, Gamkosian A, Jarsun B, Zamora YE, Sigismodi M, Caminos R, Miró R (1995) Mapa Geológica de la Provincia de Córdoba, República Argentina 1:500.000. Ministerio de Economía y Obras y Servicios Públicos, SEGEMAR, Buenos Aires

  • Lyons JB, Snellenburg J (1971) Dating faults. Geol Soc Am Bull 82:1749–1752

    Article  Google Scholar 

  • Martino RD (2003) Las fajas de deformación dúctil de las Sierras Pampeanas de Córdoba: Una reseña general. Revista de la Asociación Geológica Argentina 58(4):549–571

  • Martino RD, Kraemer PE, Escayola MP, Giambastini M, Arnosio M (1995) Transecta de las Sierras Pampeanas de Córdoba a los 32°S. Revista de la Asociación Geológica Argentina 50:60–77

    Google Scholar 

  • Massabie A (1976) Estructura cenozoica entre Charbonier y Cosquin, Provincia de Córdoba. In: 6° Congreso Geológico Argentino, Actas 1, Buenos Aires, pp 109–123

  • Massabie A (1987) Neotectónica y sismicidad en la región de Sierras Pampeanas Orientales, sierras de Córdoba, Argentina. In: 10° Congreso Geológico Argentino, Actas, vol 1, pp 271–274

  • Massabie A, Szlafsztein C (1991) Condiciones geomecánicas y edad del fallamiento neotectónico en las Sierras Pampeanas Orientales, Córdoba, Argentina. Asociación Argentina de Geología Aplicada a la Ingeniería, Actas 6:154–168

    Google Scholar 

  • Miller H, Söllner F (2005) The Famatina complex (NW Argentina): back-docking of an island arc or terrane accretion? Early Palaeozoic geodynamics at the western Gondwana margin. Geological Society, London, Special Publications 246(1):241–256

    Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Northrup CJ, Simpson C, Hodges KV (1998) Pseudotachylite in Fault zones of the Sierras de Córdoba, Argentina: Petrogenesis and 40Ar/39Ar Geochronology. In: Geological Society of America (ed) GSA annual meeting, abstracts with program, vol 30, Toronto, pp A-325

  • Passchier CW, Trouw RAJ (2005) Microtectonics, 2nd edn. Springer, Berlin

    Google Scholar 

  • Peacor DR, Bauluz B, Dong H, Tillick D, Yan Y (2002) Transmission and analytical electron microscopy evidence for high Mg contents of 1M illite: absence of 1M polytypism in normal prograde deiagenetic sequences of pelitic rocks. Clays Clay Miner 50:757–765

    Article  Google Scholar 

  • Pevear DR (1992) Illite age analysis, a new tool for basin thermal history analysis. In: Maest AS, Kharaka YK (eds) Water-rock interaction. AA Balkema, Rotterdam, pp 1251–1254

    Google Scholar 

  • Pevear DR (1999) Colloquium paper: illite and hydrocarbon exploration. Proc Natl Acad Sci 96(7):3440–3446. doi:10.1073/pnas.96.7.3440

    Article  Google Scholar 

  • Pevear DR, Vrolijk P, Longstaffe F (1997) Timing of Moab fault displacement and fluid movement integrated with burial history using radiogenic and stable isotopes. In: Hendry J, Carey J, Ruffell AH, Worden R (eds) Geofluids II’97: contributions to the second international conference on fluid evolution, migration and interaction in sedimentary basins and orogenic belts, Belfast, Northern Ireland, 10–14 March 1997, pp 42–45

  • Pilger RH (1981) Plate reconstruction, aseismic ridges, and low-angle subduction beneath the Andes. Geol Soc Am Bull 92:448–456

    Google Scholar 

  • Pilger RH (1984) Kinematics of the South American subduction zone from global plate reconstructions. In: Cabre R (ed) Geodynamics of the Eastern Pacific Region, Caribbean and Cotia Arcs. Geodynamic Series 9. American Geophysical Union, Washington DC, pp 113–125

  • Ramos VA (1988) Late Proterozoic - Ealry Paleozoic of South America - a collision history. Episodes 11:168–174

    Google Scholar 

  • Ramos VA (2001) The southern central Andes. In: Cordani U, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America, Rio de Janeiro, pp 561–604

  • Ramos VA (2004) Cuyania, an exotic block to Gondwana: review of a historical success and the present problems. Gondwana Res 7(4):1009–1026

    Article  Google Scholar 

  • Ramos VA (2008) The basement of the central Andes: the Arequipa and related terranes. Annu Rev Earth Planet Sci 36(1):289–324. doi:10.1146/annurev.earth.36.031207.124304

    Article  Google Scholar 

  • Ramos VA, Folguera A (2009) Andean flat-slab subduction through time. Geological Society, London, Special Publications 327(1):31–54. doi:10.1144/SP327.3

  • Ramos VA, Jordan TE, Allmendinger RW, Mpodozis C, Kay S, Cortés JM, Palma M (1986) Paleozoic terranes of the Central Argentine–Chilean Andes. Tectonics 5(6):855–880

    Article  Google Scholar 

  • Ramos VA, Cristallini EO, Pérez D (2002) The Pampean flat-slab of the central Andes. J S Am Earth Sci 15:59–78

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Reynolds RC, Thomson CH (1993) Illite from the Potsdam sandstone of New York: a probable noncentrosymmetric mica structure. Clays Clay Miner 41:66–72

    Article  Google Scholar 

  • Richardson T, Gilbert H, Anderson M, Ridgway KD (2012) Seismicity within the actively deforming Eastern Sierras Pampeanas, Argentina. Geophys J Int 188(2):408–420. doi:10.1111/j.1365-246X.2011.05283.x

    Article  Google Scholar 

  • Rossello E, Mozetic ME (1999) Caracterizacion estructural y significado geotectonico de los depocentros creacios continentales del centro-oesteargentine. 5° Simposio sobre o Cretaceo do Brasil, Boletim 5:107–113

  • Schlagintweit O (1954) Una interesante dislocación en Potrero de Garay (Valle de Calamuchita), Sierra Chica y Grande de la Provincia de Córdoba. Revista de la Asociación Geológica Argentina 9:135–154

    Google Scholar 

  • Schleicher A, Warr L, van der Pluijm BA (2006) Fluid focusing and back reactions in the uplifted shoulder of the Rhine rift system; a clay mineral study along the Schauenburg fault zone (Heidelberg, Germany). Int J Earth Sci 95(1):19–33. doi:10.1007/s00531-005-0490-3

  • Schmidt CJ, Astini RA, Costa CH, Gardini CE, Kraemer PE (1995) Cretaceous rifting, alluvial fan sedimentation, and Neogene inversion, southern Sierras Pampeanas, Argentina. In: Tankard AJ, Suárez Soruco R, Welsink HJ (eds) Petroleum basins of South America. American Association of Petroleum Geologists Memoir, Tulsa, pp 341–358

  • Schumacher E (1975) Herstellung von 99,9997% 38Ar für die 40 K/40Ar Geochronologie. Geochronol Chim 24:441–442

    Google Scholar 

  • Siegesmund S, Steenken A, López de Luchi MG, Wemmer K, Hoffmann A, Mosch S (2004) The Las Chacras-Potrerillos Batholith, Pampean Ranges, Argentina; structural evidences, emplacement and timing of the intrusion 93(1). (Series) http://link.springer.de/link/service/journals/00531/index.htm

  • Simpson C, Whitmeyer SJ, Paor DG de, Gromet LP, Miró R, Krol MA, Short H (2001) Sequential ductile to brittle reactivation of major fault zones along the accretionary margin of Gondwana in Central Argentina. Geological Society, London, Special Publications 186(1):233–255. doi:10.1144/GSL.SP.2001.186.01.14

  • Sims JP, Ireland TR, Camacho A, Lyons E, Pieters PE, Skirrow RG, Stuart-Smith PG, Miró R (1998) U-Pb, Th-Pb and Ar-Ar geochronology from the southern Sierras Pampeanas, Argentina: implications for the Palaeozoic tectonic evolution of the western Gondwana margin. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean margin of Gondwana, pp 259–281

  • Solum JG, van der Pluijm BA, Peacor DR (2005) Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab fault, Utah. J Struct Geol 27(9):1563–1576. doi:10.1016/j.jsg.2005.05.002

    Google Scholar 

  • Sosa GM, Augsburger MS, Pedregosa JC (2002) Columbite-group minerals from rare-metal granitic pegmatites of the Sierra de San Luis, Argentina. Eur J Mineral 14:627–636

    Article  Google Scholar 

  • Środoń J (1980) Precise identification of illite/smectite interstratifications by X-ray powder diffraction. Clays Clay Miner 28(6):401–411

    Google Scholar 

  • Środoń J (1999) Nature of mixed-layer clays and mechanisms of their formation and alteration. Ann Rev Earth Planet Sci 27:19–53

    Article  Google Scholar 

  • Środoń J, Eberl DD (1984) Illite. Rev Mineral Geochem 13(1):495–544

    Google Scholar 

  • Środoń J, Eberl DD, Drits VA (2000) Evolution of fundamental particle size during illitization of smectite and implications for reaction mechanism. Clays Clay Miner 48:446–458

    Article  Google Scholar 

  • Środoń J, Clauer N, Eberl DD (2002) Interpretation of K–Ar dates of illitic clays from sedimentary rocks aided by modelling. Am Miner 87:1528–1535

    Google Scholar 

  • Stauder W (1973) Mechanism and spatial distribution of Chilean earthquakes with relation to subduction of the oceanic plate. J Geophys Res 78:5033

    Article  Google Scholar 

  • Steenken A, Wemmer K, López de Luchi MG, Siegesmund S, Pawlig S (2004) Crustal Provenance and cooling of the basement complexes of the Sierra de San Luis: an insight into the tectonic history of the Pro to-Andean margin of Gondwana. Gondwana Res 7(4):1171–1195. doi:10.1016/S1342-937X(05)71092-3

    Article  Google Scholar 

  • Steenken A, Siegesmund S, Wemmer K, López de Luchi MG (2008) Time constraints on the Famatinian and Achalian structural evolution of the basement of the Sierra de San Luis (Eastern Sierras Pampeanas, Argentina). J S Am Earth Sci 25(3):336–358. doi:10.1016/j.jsames.2007.05.002

    Article  Google Scholar 

  • Steenken A, Wemmer K, Martino RD, López de Luchi MG, Guereschi A, Siegesmund S (2010) Post-Pampean cooling and the uplift of the Sierras Pampeanas in the west of Córdoba (Central Argentina). N Jb Geol Pal A 256(2):235–255. doi:10.1127/0077-7749/2010/0094

    Article  Google Scholar 

  • Steiger RH, Jaeger E (1977) Subcommission on geochronology; convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36(3):359–362

    Article  Google Scholar 

  • Surace IR, Clauer N, Thélin P, Pfeifer H (2011) Structural analysis, clay mineralogy and K–Ar dating of fault gouges from Centovalli Line (Central Alps) for reconstruction of their recent activity. Tectonophysics 510(1–2):80–93. doi:10.1016/j.tecto.2011.06.019

    Article  Google Scholar 

  • van der Pluijm BA, Hall CM, Vrolijk P, Pevear DR, Covey M (2001) The dating of shallow faults in the Earth’s crust. Nature 412:172–175

    Article  Google Scholar 

  • Varela R, Llambías EJ, Cingolani CA, Sato A (1994) Datación de algunos granitoidos de la Sierra de San Luis (Argentina) e interpretación evolutiva. In: Actas del Congreso Geológico Chileno 14, pp 1249–1253

  • Velde B (1965) Experimental determination of muscovite polymorph stabilities. Am Mineral 50:436–449

    Google Scholar 

  • Velde B, Hower J (1963) Petrologial significance of illite polymorphism in Paleozoic sedimentary rocks. Am Mineral (48):1239–1254

  • Vigny C, Rudloff A, Ruegg JC, Madariaga R, Campos J, Alvarez M (2009) Upper plate deformation measured by GPS in the Coquimbo Gap, Chile. Phys Earth Planet Interiors 175:86–95. doi:10.1016/j.pepi.2008.02.013

    Article  Google Scholar 

  • Villa IM (1998) Isotopic closure. Terra Nova 10:45–47

    Article  Google Scholar 

  • von Huene R, Corvalan J, Flueh E, Hinz K, Korstgard J, Ranero C, Weinrebe W (1997) Tectonic control of the subducting Juan Fernandez Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16(3):474–488

    Article  Google Scholar 

  • Weaver CE (1989) Clays, muds, and shales. Elsevier; Distributors for the U.S. and Canada. Elsevier Science Pub. Co., Amsterdam

  • Weber K (1972) Notes on the determination of illite crystallinity. Neues Jahrbuch für Geologie und Paläontologie - Monatshefte 6:267–276

    Google Scholar 

  • Wemmer K (1991) K–Ar-Alterdatierungsmöglichkeiten für retrograde Deformationsprozesse im spröden und duktilen Bereich - Beispiele aus der KTB-Vorbohrung (Oberpfalz) und dem Bereich der Insubrischen Linie (N-Italien). Göttinger Arbeiten zur Geologie und Paläontologie 51:1–61

    Google Scholar 

  • Wemmer K, Ahrendt H (1997) Comparative K–Ar and Rb–Sr age determinations of retrograde processes on rocks from the KTB deep drilling project. Int J Earth Sci Geol Rundsch 86:272–285

    Article  Google Scholar 

  • Wemmer K, Steenken A, Mueller S, López de Luchi MG, Siegesmund S (2011) The tectonic significance of K–Ar illite fine-fraction ages from the San Luis Formation (eastern Sierras Pampeanas, Argentina). Int J Earth Sci Geol Rundsch 100:659–669

    Article  Google Scholar 

  • Wolff R, Dunkl I, Kiesselbach G, Wemmer K, Siegesmund S (2011) Thermochronological constraints on the multiphase exhumation history of the Ivrea-Verbano Zone of the Southern Alps. Tectonophysics. doi:10.1016/j.tecto.2012.03.019

  • Yañez G, Ranero GR, von Huene R, Díaz J (2001) Magnetic anomaly interpretation across a segment of the Southern Central Andes (32–34°S): implications on the role of the Juan Fernández Ridge in the tectonic evolution of the margin during upper Tertiary. J Geophys Res 106:6325–6345

    Article  Google Scholar 

  • Ylagan R, Altaner S, Pozzuoli A (2000) Reaction mechanisms of smectite illitization associated with hydrothermal alteration from Ponza Island, Italy. Clays Clay Miner 48(6):610–631

    Article  Google Scholar 

  • Yoder HS Jr, Eugster HP (1955) Synthetic and natural muscovites. Geochim et Cosmochim Acta 8:225–280

    Article  Google Scholar 

  • Zhao G, Peacor DR, McDowell S (1999) “Retrograde diagenesis” of clay minerals in the Precambrian Freda Sandstone, Wisconsin. Clays Clay Miner 47(2):119–130

    Article  Google Scholar 

  • Zoeller M, Brockamp O (1997) 1M- and 2M (sub 1) -illites; different minerals and not polytypes; results from single crystal investigations at the transmission electron microscope (TEM). Eur J Mineral 9(4):821–827

    Google Scholar 

  • Zwingmann H, Yamada K, Tagami T (2010) Timing of brittle deformation within the Nojima fault zone, Japan. Chem Geol 275(3–4):176–185. doi:10.1016/j.chemgeo.2010.05.006

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dennis Harries who gave us the possibility to perform TEM analyses. Furthermore, the authors are grateful to Reiner Dohrmann and Stephan Kaufhold for CEC, IR, XRF and DTA analyses. For the careful sample preparation, we are thankful to Annette Süssenberger. The help of Emilio Ahumada and Mónica López de Luchi, alleviating our stay in Argentina, as well as André Steenken and Juan Antonio Palavecino assisting in the field was highly appreciated. This research project is financed by the German Science Foundation (DFG project SI 438/31-1). Field work done by FB was financially supported by the DAAD (project number D/08/48018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frithjof A. Bense.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bense, F.A., Wemmer, K., Löbens, S. et al. Fault gouge analyses: K–Ar illite dating, clay mineralogy and tectonic significance—a study from the Sierras Pampeanas, Argentina. Int J Earth Sci (Geol Rundsch) 103, 189–218 (2014). https://doi.org/10.1007/s00531-013-0956-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0956-7

Keywords

Navigation