Skip to main content
Log in

Paleostress pattern and salt tectonics within a developing foreland basin (north-western Subhercynian Basin, northern Germany)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Analysing the paleostress field in sedimentary basins is important for understanding tectonic processes and the planning of drilling campaigns. The Subhercynian Basin of northern Germany is a perfect natural laboratory to study the paleostress field in a developing foreland basin. The simple layer-cake geometry of the basin-fill is dominated by several piercing and non-piercing salt structures. We derived the paleostress field from the orientation of fracture sets, faults, slickensides and stylolites. On a regional scale, the basin-fill is characterized by a horizontal compressional paleostress vector that is mainly NNE-SSW-oriented, which reflects the Late Cretaceous inversion phase in Central Europe. We show that the local paleostress field is distinctly perturbated due to the salt structures. Along the edge of the salt pillows, the maximum horizontal paleostress vector is deflected by up to 90° from the regional trend. In the case of the Elm salt pillow, it forms a radial pattern. Restoration of balanced cross-sections demonstrates at least 9 % of the shortening of the north-western part of the Subhercynian Basin was achieved by folding. The salt structures in the north-western Subhercynian Basin are the result of varying stress conditions. Initial extension in the Triassic caused first salt movements that prevailed during the Jurassic and Early Cretaceous. Most important is the Late Cretaceous contractional phase that shortened the diapirs and led to the formation of the salt pillows between diapirs due to detachment folding. We derive four main controlling factors for such salt-dominated contractional basins: (1) the wedge-shape basin-fill is the product of the dynamic load at the southern margin of the basin, (2) a basal salt layer fed the diapirs and acted as a detachment horizon during the later shortening, (3) detachment folding was the dominating deformation mechanism during contraction, and (4) the pre-existing diapirs controlled the position of the detachment folds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allwardt PF, Bellahsen N, Pollard DD (2007) Curvature and fracturing based on global positioning system data collected at the Sheep Mountain anticline, Wyoming. Geosphere 3:408–421

    Article  Google Scholar 

  • Alsop GI (1996) Physical modelling of fold and fracture geometries associated with salt diapirism. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics. Geol So, Spec Pub, pp 227–241

    Google Scholar 

  • Anders MH, Wiltschko DV (1994) Mircofracturing, paleostress and the growth of faults. J Struc Geol 16:795–815

    Article  Google Scholar 

  • Arlegui L, Simón JL (2001) Geometry and distribution of regional joint sets in a non-homogeneous stress field: case study in the Ebro basin (Spain). J Struc Geol 23:297–313

    Article  Google Scholar 

  • Atwater GI, McLain JF (1959) Nature of growth of southern Louisiana salt domes and its effect on petroleum accumulation. AAPG Bull 43:2592–2622

    Google Scholar 

  • Aydin A (2000) Fractures, faults, and hydrocarbon entrapment, migration, and flow. Mar Petrol Geol 17:797–814

    Article  Google Scholar 

  • Baldschuhn R, Binot F, Fleig S, Kockel F (1996) Geotektonischer Atlas von Nordwest-Deutschland und dem deutschen Nordsee-Sektor. Geologisches Jahrbuch Reihe A 153, Schweizerbart, Stuttgart

  • Best G (1996) Floßtektonik in Nordwestdeutschland: Erste Ergebnisse reflexionsseismischer Untersuchungen an der Salzstruktur “Oberes Allertal”. ZDGG 147:455–464

    Google Scholar 

  • Best G, Zirngast M (2002) Die strukturelle Entwicklung der exhumierten Salzstruktur “Oberes Allertal”. Geologisches Jahrbuch, Sonderheft A1

  • Bowers GL (2007) Effect of inelastic sediment behavior on near-salt stresses and pore pressures. Lead Edge 26:1462–1465

    Article  Google Scholar 

  • Brandes C, Pollok L, Schmidt C, Wilde V, Winsemann J (2012) Basin modelling of a lignite-bearing salt rim syncline: insights into rim syncline evolution and salt diapirism in NW Germany. Basin Res 24:699–716

    Article  Google Scholar 

  • Bump AP (2003) Reactivation, trishear modelling, and folded basement in Laramide uplifts: implications for the origins of intra-continental faults. GSA Today 13:4–10

    Article  Google Scholar 

  • Bump AP, Davis GH (2003) Late Cretaceous—early tertiary laramide deformation of the northern Colorado Plateau, Utah and Colorado. J Struc Geol 25:421–440

    Article  Google Scholar 

  • Burmester G, Franzke HJ, Müller R (2006) Die oberkretazische Verformungsgeschichte im Umfeld des Salzgitterer Sattels (westliches Subherzynes Becken). Claust Geowiss 5:101–114

    Google Scholar 

  • Carlé W (1939) Die Beulen im deutschen Saxonikum. Geol Rdsch 30:795–799

    Article  Google Scholar 

  • Dahlstrom CDA (1969) Balanced cross-sections. Can J Earthsci 6:743–757

    Article  Google Scholar 

  • Davison I, Alsop I, Birch P, Elders C, Evans N, Nicholson H, Rorison P, Wade D, Woodward J, Young M (2000) Geometry and late-stage structural evolution of the Central Graben salt diapirs, North Sea. Mar Petrol Geol 17:499–522

    Article  Google Scholar 

  • de Jager J (2007) Geological development.—In: Wong TE, Batjes DAJ, de Jager J (eds), Geology of the Netherlands. Royal Netherlands Academy of Arts and Sciences, pp 5–26

  • DEKORP-Basin Research Group, Bachmann GH, Bayer U, Dürbaum HJ, Hoffmann N, Krawczyk CM, Lück E, McCann T, Meissner R, Meyer H, Oncken O, Polom U, Prochnow U, Rabbel W, Scheck M, Stiller M (1999) Deep crustal structure of the Northeast German Basin: new DEKORP-BASIN ′96 deep-profiling results. Geology 27:55–58

    Article  Google Scholar 

  • Delvaux D, Moeys R, Stapel G, Petit C, Levi K, Miroshnichenko A, Ruzhich V, San′kov V (1997) Paleostress reconstructions and geodynamics of the Baikal region Central Asia, Part 2. Cenozoic rifting. Tectonophysics 282:1–38

    Article  Google Scholar 

  • DePaor DG (1988) Balanced section in thrust belts part 1: construction. AAPG Bull 72:73–90

    Google Scholar 

  • Dusseault MB, Maury V, Sanfilippo F, Santarelli FJ (2004) Drilling around salt: stresses, risks uncertainties. Gulf Rocks 2004, 6th North America Rock Mechanics Symposium (NARMS), Houston, Texas, June 5–9, 2004, Am Rock Mech Ass Paper 04-647, 12 p

  • Engelder T, Geiser P (1980) On the use of regional joint sets as trajectories of paleostress fields during the development of the Appalachian Plateau, New York. JGR 85 B11:6319–6341

  • Epard J-L, Groshong RH (1993) Excess area and depth to detachment. AAPG Bull 77:1291–1302

    Google Scholar 

  • Fischer MP, Wilkerson MS (2000) Predicting the orientation of joints from fold shape: results of pseudo-three-dimensional modeling and curvature analysis. Geology 28:15–18

    Article  Google Scholar 

  • Franzke HJ, Schmidt D (1993) Die mesozoische Entwicklung der Harznordrandstörung—Makrogefügeuntersuchungen in der Aufrichtungszone. Zbl. Geol. Paläont. Teil I:1443–1457

    Google Scholar 

  • Gohram FD, Woodward LA, Callender JF, Greer AR (1979) Fractures in Cretaceous rocks from selected areas of the San Juan basin, New Mexico: exploration implications. AAPG Bull 64:598–607

    Google Scholar 

  • Griffiths P, Jones S, Salter N, Schaefer F, Osfield R, Reiser H (2002) A new technique for 3-D flexural-slip restoration. J Struc Geol 24:773–782

    Article  Google Scholar 

  • Groshong RH, Epard JL (1994) The role of strain in area-constant detachment folding. J Struc Geol 16:613–618

    Article  Google Scholar 

  • Guenot A (1989) Borehole breakouts and stress fields. Int J Rock Mech Sci Geomech Abstr 27(3–4):185–195

    Article  Google Scholar 

  • Hancock PL (1985) Brittle microtectonics: principles and practice. J Struc Geol 7:437–457

    Article  Google Scholar 

  • Hancock PL, Engelder T (1989) Neotectonic joints. GSA Bull 101:1197–1208

    Article  Google Scholar 

  • Hancock PL, Kadhi T (1978) Analysis of mesoscopic fractures in the Dhruma-Nisah segment of the central Arabian graben system. J Geol Soc Lond 135:339–347

    Article  Google Scholar 

  • Harding TP, Lowell JD (1979) Structural styles, their plate-tectonic habitats and hydrocarbon traps in petroleum provinces. AAPG Bull 63:1016–1069

    Google Scholar 

  • Hardy S, Finch E (2005) Discrete-element modelling of detachment folding. Basin Res 17:507–520

    Article  Google Scholar 

  • Hark HU (1956) Zur Tektogenese der Schmalsättel im Subherzynen Becken. Abh Braunschw Wiss Ges 8:16–22

    Google Scholar 

  • Harris JF, Taylor GL, Walper JL (1960) Relation of deformational fractures in sedimentary rocks to regional and local structure (Wyoming). AAPG Bull 44:1853–1873

    Google Scholar 

  • Hayashi K, Willis-Richards J, Hopkirk RJ, Niibori Y (1999) Numerical models of HDR geothermal reservoirs—a review of current thinking and progress. Geothermics 28:507–518

    Article  Google Scholar 

  • Hennings PH, Olson JE, Thompson LB (2000) Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs: an example from Wyoming. AAPG Bull 84:830–849

    Google Scholar 

  • Hospers J, Rathore JS, Jianhua F, Finnstrom EG, Holthe J (1988) Salt tectonics in the Norwegian—Danish Basin. Tectonophysics 149:35–60

    Article  Google Scholar 

  • Ismail-Zadeh AT, Talbot CJ, Volozh YA (2001) Dynamic restoration of profiles across diapiric salt structures: numerical approach and its applications. Tectonophysics 337:23–38

    Article  Google Scholar 

  • Jackson MPA, Talbot CJ (1986) External shapes, strain rates, and dynamics of salt structures. GSA Bull 97:305–323

    Article  Google Scholar 

  • Jackson M, Vendeville B (1994) Regional extension as a geologic trigger for diapirism. GSA Bull 106:57–73

    Article  Google Scholar 

  • King RC, Hillis RR, Tingay MRP, Damit A-R (2010) Present-day stresses in Brunei, NW Borneo: superposition of deltaic and active margin tectonics. Basin Res 22:236–247

    Article  Google Scholar 

  • Kleinspehn KL, Pershing J, Teyssier C (1989) Paleostress stratigraphy: a new technique for analyzing tectonic control on sedimentary-basin subsidence. Geology 17:53–246

    Article  Google Scholar 

  • Kley J, Voigt T (2008) Late Cretaceous intraplate thrusting in central Europe: effect of Africa-Iberia-Europe convergence, not Alpine collision. Geology 36:839–842

    Article  Google Scholar 

  • Kley J, Franzke H-J, Jähne F, Krawczyk C, Lohr T, Reicherter K, Scheck-Wenderoth M, Sippel J, Tanner D, van Gent H (2008) Strain and stress. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds) Dynamics of complex intracontinental basins. The Central European Basin System, Springer, pp 97–124

    Google Scholar 

  • Kockel F (1991) Die Struktur im Untergrund des Braunschweigischen Landes.- Geol. Jb. A 127:391–404

    Google Scholar 

  • Kockel F (2003) Inversion structures in Central Europe—Expressions and reasons, an open discussion. Neth. J. Geosci./Geologie en Mijnbouw 82:367–382

    Google Scholar 

  • Kossow D, Krawczyk C, McCann T, Strecker M, Negendank JFW (2000) Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. Int J Earth Sci 89:652–664

    Article  Google Scholar 

  • Koupriantchik D, Hunt SP, Boult PJ, Meyers AG (2007) Geomechanical modelling of salt diapirs: 3D salt structures from the Officer Basin, South Australia. In: Munson TJ, Ambrose GJ. Proceedings of the Central Australian Basins Symposium (CABS), Alice Springs, Northern Territory, 16–18 August, 2005. Northern Territory Geological Survey, Spc Pub 2, 388–396

  • Kukla PA, Urai JL, Mohr M (2008) Dynamics of salt structures. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds), Dynamics of complex intracontinental basins: The Central European Basin System, Springer, pp 291–306

  • Laubach SE (2003) Practical approaches to identifying sealed and open fractures. AAPG Bull 87:561–579

    Article  Google Scholar 

  • Lewicki JL, Birkholzer J, Tsang C-F (2006) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457–467

    Article  Google Scholar 

  • Li S, Wang X, Suppe J (2012) Compressional salt tectonics and synkinematic strata of the western Kuqa foreland basin, southern Tien Shan, China. Basin Res 4:475–497

    Article  Google Scholar 

  • Lisle RJ (1994) Detection of zones of abnormal strains in structures using Gaussian curvature analysis. AAPG Bull 78:1811–1819

    Google Scholar 

  • Lohr T, Krawczyk CM, Tanner DC, Samiee R, Endres H, Oncken O, Trappe H, Kukla PA (2007) Strain partitioning due to salt: insights from interpretation of a 3D seismic data set in the NW German Basin. Basin Res 19:579–597

    Article  Google Scholar 

  • Lohr T, Krawczyk CM, Oncken O, Tanner DC (2008) Evolution of a fault surface from 3D attribute analysis and displacement measurements. J Struc Geol 30:690–700

    Article  Google Scholar 

  • Lucier A, Zoback M, Gupta N, Ramakrishnan TS (2006) Geomechanical aspects of CO2 sequestration in a deep saline reservoir in the Ohio River Valley region. AAPG Bull 13:85–103

    Google Scholar 

  • Luo G, Nikolinakou MA, Flemings PB, Hudec MR (2012) Geomechanical modeling of stress adjacent to salt bodies: part 1-uncoupled models. AAPG Bull 96:43–64

    Article  Google Scholar 

  • Marco S, Weinberger R, Agnon A (2002) Radial clastic dykes formed by a salt diapir in the Dead Sea rift, Israel. Terra Nova 14:288–294

    Article  Google Scholar 

  • Maystrenko YP, Bayer U, Scheck-Wenderoth M (2012) Salt as a 3D element in structural modeling—Example from the Central European Basin System. Tectonophysics. doi:10.1016/j.tecto.2012.06.030

  • Mitra S, Namson J (1989) Equal-area balancing. Am J Sci 289:563–599

    Article  Google Scholar 

  • Mohr M, Kukla PA, Urai JL, Bresser G (2005) Multiphase salt tectonic evolution in NW Germany: seismic interpretation and retro-deformation. Int J Earth Sci 94:917–940

    Article  Google Scholar 

  • Narr W (1991) Fracture density in the deep subsurface: techniques with application to Point Arguello oil field. AAPG Bull 75:1300–1323

    Google Scholar 

  • Nikolinakou MA, Lou G, Hudec MR, Flemings PB (2012) Geomechanical modeling of stress adjacent to salt bodies: part 2-Poroplasticity and coupled overpressures. AAPG Bull 96:65–85

    Article  Google Scholar 

  • Primke G, Radzinski KH (1976) Zur Gliederung des mittleren Buntsandsteins (Volpriehausen- bis Solling-Folge) im Subherzynen Becken. ZGW 4:1473–1481

    Google Scholar 

  • Ramsey JG, Huber MI (1987) The techniques of modern structural geology, vol II. Academic Press, London

    Google Scholar 

  • Remmelts G (1995) Fault-related salt tectonics in the southern North Sea, the Neterlands. In: Jackson MPA, Roberts DG, Snelson S (eds). Salt Tectonics: A global perspective, AAPG Mem 65:261–272

  • Roberts GP (2007) Fault orientation variations along the strike of active normal fault systems in Italy and Greece: implications for predicting the orientations of subseismic-resolution faults in hydrocarbon reservoirs. AAPG Bull 91:1–20

    Article  Google Scholar 

  • Rowan MG (1993) A systematic technique for the sequential restoration of salt structures. Tectonophysics 228:331–348

    Article  Google Scholar 

  • Rowan MG (1997) Three-dimensional geometry and evolution of a segmented detachment fold, Mississippi fan foldbelt, Gulf of Mexico. J Struc Geol 19:463–480

    Article  Google Scholar 

  • Rowan MG, Ratliff RA (2012) Cross-section restoration of salt-related deformation: best practices and potential pitfalls. J Struc Geol 41:24–37

    Article  Google Scholar 

  • Rowan MG, Jackson MPA, Trudgill BD (1999) Salt related fault families and fault welds in the northern Gulf of Mexico. AAPG Bull 83:1454–1484

    Google Scholar 

  • Saintot A, Angelier J (2002) Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary. Tectonophysics 357:1–31

    Article  Google Scholar 

  • Scheck M, Bayer U (1999) Evolution of the Northeast German Basin—inferences from a 3D structural model and subsidence analysis. Tectonophysics 313:145–169

    Article  Google Scholar 

  • Scheck-Wenderoth M, Lamarche J (2005) Crustal memory and basin evolution in the Central European Basin System-new insights from a 3D structural model. Tectonophysics 397:143–165

    Article  Google Scholar 

  • Scheck-Wenderoth M, Maystrenko Y, Hübscher C, Hansen M, Mazur S (2008) Dynamics of salt basins. In: Littke R, Bayer U, Gajewski D, Nelskamp S (eds), Dynamics of complex intracontinental basins: The Central European Basin System, Springer, pp 307–322

  • Schretzenmayr S (1993) Methodik zur Lokalisierung der relativ höchsten Kluftintensitäten an biegedeformierten Strukturen. ZGW 21:327–338

    Google Scholar 

  • Schulz-Ela DD, Jackson MPA, Vendeville BC (1993) Mechanics of active salt diapirism. Tectonophysics 228:275–313

    Article  Google Scholar 

  • Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the south-western margin of the Central European Basin System—application of fault-slip analysis to unravel a polyphase deformation pattern. Tectonophysics 470:129–146

    Article  Google Scholar 

  • Stackebrandt W (1986) Beiträge zur tektonischen Analyse ausgewählter Bruchzonen der Subherzynen Senke und angrenzender Gebiete (Aufrichtungszone, Flechtinger Scholle). Veröffentlichung des Zentralinstituts für Physik der, Erde 79

    Google Scholar 

  • Stearns DW, Friedman M (1972) Reservoirs in fractured rock, in Stratigraphic oil and gas fields: classification, exploration methods, and case histories. AAPG Mem 16:82–106

    Google Scholar 

  • Stewart S (2006) Implications of passive salt diapir kinematics for reservoir segmentation by radial and concentric faults. Mar Petrol Geol 23:843–853

    Article  Google Scholar 

  • Stille H (1910) Die mitteldeutsche Rahmenfaltung. Jahresbericht niedersächs. Geol. Ver. 3:141–170

    Google Scholar 

  • Storti F, Balsamo F, Cappanera F, Tosi C (2011) Sub-seismic scale fracture pattern and in situ permeability data in the chalk atop of the Krempe salt ridge at Lägerdorf, NW Germany: inferences on synfolding stress field evolution and its impact on fracture connectivity. Mar Petrol Geol 28:1315–1332

    Article  Google Scholar 

  • Tindall SE, Davis GH (1999) Monocline development by oblique-slip fault-propagation folding: the East Kaibab monocline, Colorado Plateau, Utah. J Struc Geol 21:1303–1320

    Article  Google Scholar 

  • Tingay MRP, Hillis RR, Morley CK, Swarbrick RE, Okpere EC (2003) Variation in vertical stress in the Baram Basin, Brunei: tectonic and geomechanical implications. Mar Petrol Geol 20:1201–1212

    Article  Google Scholar 

  • Trudgill B (2011) Evolution of salt structures in the northern Paradox Basin: controls on evaporite depostion, salt wall growth and supra-salt stratigraphic architecture. Basin Res 23:208–238

    Article  Google Scholar 

  • Trusheim F (1960) Mechanism of salt migration in northern Germany. AAPG Bull 44:1519–1540

    Google Scholar 

  • Van Wijhe DH (1987) Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137:171–219

    Article  Google Scholar 

  • Vendeville BC (2002) A new interpretation of Trusheim’s classic model of salt-diapir growth. Gulf Coast Assoc Geol Soc Transac 52:943–952

    Google Scholar 

  • Vendeville BC, Jackson MPA (1992) The rise of diapirs during thin-skinned extension. Mar Petrol Geol 9:331–353

    Article  Google Scholar 

  • Voigt T, Wiese F, von Eynatten H, Franzke H-J, Gaupp R (2006) Facies evolution of syntectonic Upper cretaceous deposits in the Subhercynian Cretaceous Basin and adjoining areas (Germany). ZDGG 157:203–244

    Article  Google Scholar 

  • von Eynatten H, Voigt T, Meier A, Franzke H-J, Gaupp R (2008) Provenance of the clastic Cretaceous Subhercynian Basin fill: constraints to exhumation of the Harz Mountains and the timing of inversion tectonics in the Central European Basin. Int J Earth Sci 97:1315–1330

    Article  Google Scholar 

  • Wilkerson MS, Dicken CL (2001) Quick-look techniques for evaluating two-dimensional cross sections in detached contractional settings. AAPG Bull 85:1759–1770

    Google Scholar 

  • Withjack M, Scheiner C (1982) Fault patterns associated with domes–an experimental and analytical study. AAPG Bull 66:302–316

    Google Scholar 

  • Woldstedt P (1924) Zur Tektonik des subherzynen Beckens. ZDGG 76:183–201

    Google Scholar 

  • Woldstedt P (1934) Über den Charakter schmaler Störungszonen und breiter Sättel im Gebiet zwischen Harz und Hannover. J Preuß Geol L A 55:93–102

    Google Scholar 

  • Wrede V (1988) Der nördliche Harzrand—flache Abscherbahn oder wrench-fault-system. Geol Rdsch 77:101–107

    Article  Google Scholar 

  • Wrede V (2008) Nördliche Harzrandstörung: diskussionsbeiträge zu Tiefenstruktur, Zeitlichkeit und Kinematik. ZDGG 159:293–316

    Article  Google Scholar 

  • Zahm CZ, Hennings PH (2009) Complex fracture development related to stratigraphic architecture: challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. AAPG Bull 93:1427–1446

    Article  Google Scholar 

  • Zhao J, Brown ET (1992) Hydro-thermo-mechanical properties of joints in the Carnmenellis granite. Quart J Engin Geol 25:279–290

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to W. Stackebrandt and an anonymous reviewer for their constructive and helpful comments. Financial support by the Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK) is gratefully acknowledged (PRO Niedersachsen Project No. 11.2-76202-17-3109). We would like to thank Bernhard Cramer, Frank Wiese, Volker Wilde and Frank Wrobel for discussion. Janine Meinsen is acknowledged for help with GOCAD and Jörg Lang is thanked for discussion. Hans-Peter Blohm is thanked for the permission to enter the protected areas and help in the field. Midland Valley Exploration Ltd. is gratefully acknowledged for the use of their software package Move.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Brandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandes, C., Schmidt, C., Tanner, D.C. et al. Paleostress pattern and salt tectonics within a developing foreland basin (north-western Subhercynian Basin, northern Germany). Int J Earth Sci (Geol Rundsch) 102, 2239–2254 (2013). https://doi.org/10.1007/s00531-013-0911-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-013-0911-7

Keywords

Navigation