Skip to main content
Log in

Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Pannonian Basin, originating during the Early Miocene, is a large extensional basin incorporated between Alpine, Carpathian and Dinaride fold-thrust belts. Back-arc extensional tectonics triggered deposition of up to 500-m-thick continental fluvio-lacustrine deposits distributed in numerous sub-basins of the Southern Pannonian Basin. Extensive andesitic and dacitic volcanism accompanied the syn-rift deposition and caused a number of pyroclastic intercalations. Here, we analyze two volcanic ash layers located at the base and top of the continental series. The lowermost ash from Mt. Kalnik yielded an 40Ar/39Ar age of 18.07 ± 0.07 Ma. This indicates that the marine-continental transition in the Slovenia-Zagorje Basin, coinciding with the onset of rifting tectonics in the Southern Pannonian Basin, occurs roughly at the Eggenburgian/Ottnangian boundary of the regional Paratethys time scale. This age proves the synchronicity of initial rifting in the Southern Pannonian Basin with the beginning of sedimentation in the Dinaride Lake System. Beside geodynamic evolution, the two regions also share a biotic evolutionary history: both belong to the same ecoregion, which we designate here as the Illyrian Bioprovince. The youngest volcanic ash level is sampled at the Glina and Karlovac sub-depressions, and both sites yield the same 40Ar/39Ar age of 15.91 ± 0.06 and 16.03 ± 0.06 Ma, respectively. This indicates that lacustrine sedimentation in the Southern Pannonian Basin continued at least until the earliest Badenian. The present results provide not only important bench marks on duration of initial synrift in the Pannonian Basin System, but also deliver substantial backbone data for paleogeographic reconstructions in Central and Southeastern Europe around the Early–Middle Miocene transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altherr R, Lugović B, Meyer H-P, Majer V (1995) Early Miocene post-collisional calc-alkaline magmatism along the easternmost segment of the Periadriatic fault system (Slovenia and Croatia). Miner Petrol 54:225–247

    Google Scholar 

  • Aničić B, Ogorelec B, Kralj P, Mišić M (2002) Litološke značilnosti terciarnih plasti na Kozjanskem. (Lithology of Tertiary beds in Kozjansko, Eastern Slovenia). Geologija 45:213–246

    Article  Google Scholar 

  • Avanić R, Pécskay Z, Wacha L, Palinkaš L (2005) K–Ar dating of glauconitic sediments in Macelj Mt. (NW Croatia). In: Velić I, Vlahović I, Biondić R (eds) Knjiga sažetaka, 3. Hrvatski geološki kongres. Hrvatski geološki institut, Zagreb, pp 5–6

    Google Scholar 

  • Bennet RA, Hreinsdottir S, Buble G, Bašić T, Bačić Z, Marjanović M, Casale G, Gendaszek A, Cowan D (2008) Eocene to present subduction of southern Adria mantle lithosphere beneath the Dinarides. Geology 36:3–6

    Article  Google Scholar 

  • Bulić J, Jurišić-Polšak Z (2009) The lacustrine Miocene deposits at Crnika beach on the island of Pag (Croatia). Geol Croatica 62:135–156

    Google Scholar 

  • Ćorić S, Pavelić D, Rögl F, Mandic O, Vrabac S, Avanić R, Jerković L, Vranjković A (2009) Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geol Croatica 62:31–43

    Google Scholar 

  • Csepreghyné Meznerics I (1967) Az Ipolytarnoci Burdigalai fauna. Földtani Közlöny 97:177–185

    Google Scholar 

  • De Leeuw A, Mandic O, Vranjković A, Pavelić D, Harzhauser M, Krijgsman W, Kuiper KF (2010) Chronology and integrated stratigraphy of the Miocene Sinj Basin (Dinaride Lake System, Croatia). Palaeogeogr Palaeoclimatol Palaeoecol 292:155–167

    Article  Google Scholar 

  • Dolton GL (2006) Pannonian Basin Province, Central Europe (Province 4808). Petroleum geology, total petroleum systems, and petroleum resource assessment. USGS Bull 2204-B:1–47

    Google Scholar 

  • Fodor L, Csontos L, Bada G, Györfi I, Benkovics L (1999) Tertiary tectonic evolution of the Pannonian basin system and neighbouring orogens: a new synthesis of palaeostress data. In: Durand B, Jolivet L, Horvath F, Seranne M. (eds) The Mediterranean Basins: tertiary extension within the Alpine Orogen. Geol Soc Spec Publ 156:295–334

    Article  Google Scholar 

  • Fodor L, Jelen B, Márton E, Rifelj H, Kraljić M, Kevrić R, Márton P, Koroknai B, Báldi-Beke M (2002) Miocene to Quaternary deformation, stratigraphy and paleogeography in Northeastern Slovenia and Southwestern Hungary. Geologija 45(1):103–114

    Article  Google Scholar 

  • Hajek-Tadesse V, Belak M, Sremac J, Vrsaljko D, Wacha L (2009) Early Miocene ostracods from the Sadovi n (Mt. Požeška gora, Croatia). Geol Carpathica 60:251–261

    Article  Google Scholar 

  • Hamor G (1970) The Miocene of the East Mecsek Mts (in Hungarian). Ann Inst Geol Hung 53:1–483

    Google Scholar 

  • Hámor G (ed) (1988) Neogene palaeographic atlas of Central and Eastern Europe. Hungarian Geological Institute

  • Harzhauser M, Mandic O (2008) Neogene lake systems of Central and South-Eastern Europe: faunal diversity, gradients and interrelations. Palaeogeogr Palaeoclimatol Palaeoecol 260:417–434

    Article  Google Scholar 

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea. Palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Article  Google Scholar 

  • Hölzel M, Wagreich M (2004) Sedimentology of a Miocene delta complex: the type section of the ingering formation (Fohnsdorf Basin, Austria). Austrian J Earth Sci 95–96:80–86

    Google Scholar 

  • Horvath F, Tari G (1999) IBS Pannonian Basin project: a review of the main results and their bearings on hydrocarbon exploration. In: Durand B, Jolivet L, Horvath F, Seranne M. (eds) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geol Soc Spec Publ 156:195–213

    Article  Google Scholar 

  • Hohenegger J, Rögl F, Ćorić S, Pervesler P, Lirer F, Roetzel R, Scholger R, Stingl K (2009) The Styrian Basin: a key to the Middle Miocene (Badenian/Langhian) Central Paratethys transgressions. Austrian J Earth Sci 102:102–132

    Google Scholar 

  • Hrvatović H (2006) Geological guidebook through Bosnia and Herzegovina. Geological Survey of Federation BiH, Sarajevo

    Google Scholar 

  • Jelen B, Rifelj H (2003) The Karpatian in Slovenia. In: Brzobohatý R, Cicha I, Kováč M, Rögl F (eds) The Karpatian. Masaryk University, Brno, pp 133–139

    Google Scholar 

  • Jurković I (1993) Mineraline sirovine sisačkog područja. Rudarsko-geološko-naftni zbornik 5:39–58

    Google Scholar 

  • Knežević S (1996) New Congeria from Šumadija and Pomoravlje. In: Krstić N (ed), Neogene of Central Serbia. Spec Publ Geoinstitute 19:27–31

    Google Scholar 

  • Kochansky-Devidé V, Slišković T (1978) Miocenske kongerije Hrvatske, Bosne i Hercegovine. Palaeont Jugoslavica 19:1–98

    Google Scholar 

  • Kókay J (2006) Nonmarine mollusc fauna from the Lower and Middle Miocene, Bakony Mts, W Hungary. Geol Hungarica Ser Palaeont 56:1–196

    Google Scholar 

  • Konečný V, Kováč M, Lexa J, Šefara J (2002) Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec Publ Ser 1:105–123

    Article  Google Scholar 

  • Koppers AAP (2002) ArArCALC—software for 40Ar/39Ar age calculations. Comput Geosci 28:605–619

    Article  Google Scholar 

  • Kovács I, Csontos L, Szabó C, Bali E, Falus G, Benedek K, Zajacz Z (2007) Paleogene–early Miocene igneous rocks and geodynamics of the Alpine-Carpathian-Pannonian-Dinaric region: an integrated approach. Geol Soc Am Spec Pap 418:93–112

    Google Scholar 

  • Krizmanić K (1995) Palynology of the Miocene bentonite from Gornja Jelenska (Mt. Moslavačka Gora, Croatia). Geol Croatica 48:147–154

    Google Scholar 

  • Krstić N, Savić L, Jovanović G, Bodor E (2003) Lower Miocene lakes of the Balkan Land. Acta Geol Hungarica 46:291–299

    Article  Google Scholar 

  • Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320:500

    Article  Google Scholar 

  • Lourens L, Hilgen F, Shackleton NJ, Laskar J, Wilson D (2004) The Neogene Period. In: Gradstein FM, Ogg JG, Smith AG (eds) A Geologic Time Scale 2004. Cambridge University Press, Cambridge, pp 409–440

    Google Scholar 

  • Lučić D, Saftić B, Krizmanić K, Prelogović E, Britvić V, Mesić I, Tadej J (2001) The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Mar Petrol Geol 18:133–147

    Article  Google Scholar 

  • Mandic O, Ćorić S (2007) Eine neue Molluskenfauna aus dem oberen Ottnangium von Rassing (NÖ)—taxonomische, biostratigraphische, paläoökologische und paläobiogeographische Auswertung. Jahrb Geol Bundesanstalt 147:387–398

    Google Scholar 

  • Mandic O, Pavelić D, Harzhauser M, Zupanič J, Reischenbacher D, Sachsenhofer RF, Tadej N, Vranjković A (2009) Depositional history of the Miocene Lake Sinj (Dinaride Lake System, Croatia): a long-lived hard-water lake in a pull-apart tectonic setting. J Paleolimnol 41:431–452

    Article  Google Scholar 

  • Milojević R (1976) Mineralne sirovine Bosne i Hercegovine. Prvi tom, Ležišta uglja. Ležišta nemetala. Geoinžinjering, Sarajevo

    Google Scholar 

  • Min KW, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64(1):73–98

    Article  Google Scholar 

  • Mutić R (1979) Tufovi u donjohelvetskim naslagama u području Brestika i Bojne (Banija, Hrvatska). Geol Vjesnik 31:253–266

    Google Scholar 

  • Ožegović F (1944) Prilog geologiji mlađeg terciara na temelju podataka iz novijih dubokih bušotina u Hrvatskoj. Vjestnik Hrvatskog Državnog Geol Zavoda 2:391–491

    Google Scholar 

  • Palfy J, Mundil R, Renne PR, Bernor RL, Kordos L, Gasparik M (2007) U–Pb and 40Ar/39Ar dating of the Miocene fossil track site at Ipolytarnóc (Hungary) and its implications. Earth Planet Sc Lett 258:160–174

    Article  Google Scholar 

  • Pamić J, Gušić I, Jelaska V (1998) Geodynamic evolution of the Central Dinarides. Tectonophysics 297:251–268

    Google Scholar 

  • Pavelić D (2001) Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin System. Basin Res 13:359–376

    Article  Google Scholar 

  • Pavelić D, Kovačić M (1999) Lower Miocene alluvial deposits of the Požeška Mt. (Pannonian Basin, Northern Croatia): cycles, megacycles and tectonic implications. Geol Croatica 52:67–76

    Google Scholar 

  • Pavelić D, Miknić M, Sarkotić Šlat M (1998) Early to Middle Miocene facies succession in lacustrine and marine environments on the southwestern margin of the Pannonian basin system. Geol Carpathica 49:433–443

    Google Scholar 

  • Pavelić D, Avanić R, Bakrač K, Vrsaljko D (2001) Early Miocene Braided river and Lacustrine sedimentation in the Kalnik mountain area (Pannonian Basin System, NW Croatia). Geol Carpathica 52:375–386

    Google Scholar 

  • Pavelić D, Avanić R, Kovačić M, Vrsaljko D, Miknić M (2003) An outline of the evolution of the Croatian part of the Pannonian Basin System. In: Vlahović I, Tišljar J (eds) Evolution of depositional environments from the Palaeozoic to the quaternary in the Karst Dinarides and the Pannonian Basin. 22nd IAS meeting of sedimentology. Field Trip Guidebook. Institute of Geology, Zagreb, pp 155–161

    Google Scholar 

  • Petrović M, Atanacković M (1969) Biostratigrafska analiza foraminifera tortonskog kata severoistočnog Potkozarja. Geol Glasnik 13:141–158

    Google Scholar 

  • Petrović M, Atanacković M (1976) Biostratigrafija tortonskog kata severnog Podkozarja i okoline sela Hrvaćani na osnovu foraminifera (severozapadna Bosna). Geol Anali Balkanskog Poluostrva 40:65–101

    Google Scholar 

  • Piller WE, Harzhauser M, Mandic O (2007) Miocene Central Paratethys stratigraphy–current status and future directions. Stratigraphy 4:151–168

    Google Scholar 

  • Placer L (2008) Principles of the tectonic subdivision of Slovenia. Geologija 51(2):205–217

    Article  Google Scholar 

  • Pletikapić Z (1960) Građa Savske potoline na produčju između Zrinske i Moslavačke gore. Geol Vjesnik 13:121–130

    Google Scholar 

  • Poljak J (1942) Prilog poznavanju geologije Kalničke gore. Vjestnik Hrvatskog Državnog Geol Zavoda 1:53–103

    Google Scholar 

  • Popov SV, Rögl F, Rozanov AY, Steininger FF, Shcherba IG, Kovác M (2004) Lithological-Paleogeographic maps of Paratethys. 10 maps late Eocene to Pliocene. Courier Forschungsinstitut Senckenberg 250:1–46

    Google Scholar 

  • Prelogović E (1975) Neotektonska karta SR Hrvatske. Geol Vjesnik 28:97–108

    Google Scholar 

  • Rasser MW, Harzhauser M, Anistratenko O, Anistratenko VV, Bassi D, Belak M, Berger J-P, Bianchini G, Čičić S, Ćosović V, Doláková N, Drobne K, Filipescu S, Gürs K, Hladilová Š, Hrvatović H, Jelen B, Kasinski JR, Kovač M, Kralj P, Marjanac T, Márton E, Mietto P, Moro A, Nagymarosy A, Nebelsick JH, Nehyba S, Ogorelec B, Oszczypko N, Pavelić D, Pavlovec R, Pavšič J, Petrová P, Piwocki M, Poljak M, Pugliese N, Redžepović R, Rifelj H, Roetzel R, Skaberne D, Sliva L, Standke G, Tunis G, Vass D, Wagreich M, Wesselingh F (2008) Paleogene and Neogene of Central Europe. In: McCann T (ed) The Geology of Central Europe, vol 2: mesozoic and cenozoic. Geological Society, London, pp 1031–1140

    Google Scholar 

  • Rögl F (1998) Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann Naturhist Mus Wien, Serie A 99:279–310

    Google Scholar 

  • Rögl F, Steininger F (1983) Vom Zerfall der Tethys zu Mediterran und Paratethys. Ann Naturhist Mus Wien 85A:135–163

  • Sachsenhofer RF, Jelen B, Hasenhüttl C, Dunkl I, Rainer T (2001) Thermal history of Tertiary basins in Slovenia (Alpine-Dinaride-Pannonian junction). Tectonophysics 334:77–99

    Article  Google Scholar 

  • Saftić B, Velić J, Sztanó O, Juhász G, Ivković Ž (2003) Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geol Croatica 56:101–122

    Google Scholar 

  • Schmid SM, Bernoulli D, Fügenschuh B, Matenco L, Schefer S, Schuster R, Tischler M, Ustaszewski K (2008) The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J Geosci 101:139–183

    Article  Google Scholar 

  • Schultz O (2003) Bivalvia neogenica (Lucinoidea-Mactroidea). In: Piller WE (ed) Catalogus Fossilium Austriae, Band 1/Teil 2. Verlag der Österreichischen Akademie der Wissenschaften, Wien, pp 381–690

    Google Scholar 

  • Šikić L, Jović B (1968) Starost “Gornjooligocenskih” naslaga sa smeđim ugljenom u području Pregrade (sjeverna Hrvatska). Geol Vjesnik 22:333–346

    Google Scholar 

  • Šimunić A, Pamić J (1993) Geology and petrology of Egerian-Eggenburgian andesites from the easternmost parts of the Pariadriatic zone in Hrvatsko Zagorje (Croatia). Acta Geol Hungarica 36:315–330

    Google Scholar 

  • Šimunić A, Avanić R, Šimunić A (1990) "Maceljski pješčenjaci" i vulkanizam zapadnog dijela Hrvatskog zagorja (Hrvatska, Jugoslavija). Rad JAZU 449:179–194

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth Planet Sc Lett 36:359–362

    Article  Google Scholar 

  • Strauss P, Harzhauser M, Hinsch R, Wagreich M (2006) Sequence stratigraphy in a classic pull-apart basin (Neogene, Vienna Basin). A 3D seismic based integrated approach. Geol Carpathica 57:185–197

    Google Scholar 

  • Tari V (2002) Evolution of the northern and western Dinarides: a tectonostratigraphic approach. EGU Stephan Mueller Spec Publ Ser 1:223–236

    Article  Google Scholar 

  • Tari V, Pamić J (1998) Geodynamic evolution of the northern Dinarides and the southern part of the Pannonian Basin. Tectonophysics 297:269–281

    Article  Google Scholar 

  • Tibljaš D, Loparić V, Belak M (2002) Discriminant function analysis of Miocene volcaniclastic rocks from North-Western Croatia based on geochemical data. Geol Croatica 55:39–44

    Google Scholar 

  • Tomljenović B, Csontos L (2001) Neogene–Quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zagorje and Karlovac Basins, Croatia). Int J Earth Sci 90:560–578

    Article  Google Scholar 

  • Tomljenović B, Csontos L, Márton E, Márton P (2008) Tectonic evolution of the northwestern Internal Dinarides as constrained by structures and rotation of Medvednica Mountains, North Croatia. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic Aspects of the Alpine-Dinaride-Carpathian System. Geol Soc Spec Publ 298:147–167

    Google Scholar 

  • Vrsaljko D, Pavelić D, Bajraktarević Z (2005) Stratigraphy and Palaeogeography of Miocene Deposits from the Marginal Area of Žumberak Mt. and the Samoborsko Gorje Mts. (Northwestern Croatia). Geol Croatica 58:133–150

    Google Scholar 

  • Wijbrans JR, Pringle MS, Koppers AAP, Scheveers R (1995) Argon geochronology of small samples using the Vulkaan argon laserprobe. Proc Kon Ned Akad v Wetensch 98:185–218

    Google Scholar 

  • Zachos J, Pagani M, Sloan S, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686–693

    Article  Google Scholar 

Download references

Acknowledgments

Thanks go to Jakov Radovčić (Croatian Natural History Museum, Zagreb) for help with the field work. We are highly obliged to Davor Pavelić (Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb) and Mathias Harzhauser (Natural History Museum Vienna) for comments and suggestions regarding an earlier version of the manuscript. We thank Werner E. Piller (University of Graz) and Reinhard F. Sachsenhofer (University of Leoben) for reviews and valuable suggestions improving the quality of the paper. The study contributes the Austrian Science Fund (FWF) Project P18519-B17: “Mollusk Evolution of the Neogene Dinaride Lake System” and was supported by Dutch Centre for Integrated Solid Earth (ISES) as well as Netherlands Organisation for Scientific Research (NWO) funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Mandic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 526 kb)

Appendix: Intercalibration of Fish Canyon Tuff and Drachenfels 40Ar/39Ar standards for irradiation batch VU69-A

Appendix: Intercalibration of Fish Canyon Tuff and Drachenfels 40Ar/39Ar standards for irradiation batch VU69-A

40Ar/39Ar ages reported in this paper are calculated relative to the Vrije Universiteit Amsterdam in-house standard Drachenfels. The age for this standard was originally reported as 25.26 Ma relative to Taylor Creek Rhyolite sanidine of 27.92 Ma (Wijbrans et al. 1995). Recent updates of international standard ages require also an update for the age of Drachenfels sanidine. Drachenfels sanidine has been used as main flux monitor in irradiation batch VU69. Along with Drachenfels, the Fish Canyon Tuff sanidine standard has been loaded on several locations next to Drachenfels. Here we provide the intercalibration data set between these two standards for irradiation batch VU69-A, the same batch in which the Glogovnica, Sjeničak and Paripovac samples are irradiated (Table 3). A compilation of Drachenfels—FC over a series of irradiations batches is in progress. (40Ar*/39ArK)Drachenfels/(40Ar*/39ArK)Fish Canyon ratios (or R-values) are calculated for three pairs of Drachenfels—Fish Canyon Tuff standards (A1 and A2, A16 and A17 and A31 and A32; Table 2). In Table A1 (online supplementary material), all relevant analytical data are reported.

Table 3 Overview of relevant samples and standards in irradiation batch VU69A

Weighted mean of R(A16-A17) and R(A32-A31) yields 0.9028 ± 0.0008 (Table 4). This yields in an age of 25.477 ± 0.030 Ma for Drachenfels relative to FCs of 28.198 ± 0.022 Ma of Kuiper et al. (2008) when using Steiger and Jäger (1977) decay constants. This translates to 25.479 ± 0.030 Ma for Drachenfels relative to FCs of 28.201 ± 0.022 Ma of Kuiper et al. (2008) when using Min et al. (2000) decay constants compilation. It is unclear why the data pair A1 and A2 is an outlier, although the individual analyses of A1 and to a lesser extent A2 are very heterogeneous.

Table 4 R values of three Drachenfels/Fish Canyon Tuff pairs

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandic, O., de Leeuw, A., Bulić, J. et al. Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/39Ar age constraints on the Miocene continental series of Northern Croatia. Int J Earth Sci (Geol Rundsch) 101, 1033–1046 (2012). https://doi.org/10.1007/s00531-011-0695-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0695-6

Keywords

Navigation