Skip to main content
Log in

Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The major structure accommodating orogen-parallel extension in the Eastern Alps is inferred to be the Brenner Fault, which forms the western boundary of the Tauern Window. The estimated amount of extension along this fault varies from a minimum of 10–20 km to a maximum of >70 km. All investigations that have attempted to constrain this amount of extension have calculated the fault plane parallel displacement required to restore the difference in structural level between footwall and hanging wall as constrained by geobarometry. However, these calculations neglected the component of exhumation of the footwall resulting from folding and erosion. Therefore, the total amount of extensional displacement was systematically overestimated. In the present study, we project a tectonic marker surface from the footwall and hanging wall of the Brenner Fault onto a N–S-striking cross section. This marker surface, which is the base of the Patscherkofel unit in the footwall and the base of the Ötztal basement in the hanging wall, is inferred to have occupied the same structural level in the hanging wall and footwall of the Brenner Fault before its activity. Therefore, the difference in height between the marker projected from the footwall and from the hanging wall is a measure of the vertical offset across the Brenner Fault. This construction shows that the vertical offset of the marker horizon on both sides of the Brenner Fault varies strongly and continuously along strike of the Brenner Fault, attaining a maximum value of 15 km at the hinge of the folded footwall (Tauern Dome). The along-strike change of vertical offset is explained by large-scale upright folding of the footwall that did not affect the hanging wall of the Brenner Fault. Therefore, the difference in vertical offset of 10 km between the area of the Brenner Pass and the area immediately south of Innsbruck corresponds to the shortening (upright folding) component of exhumation of the footwall. The remaining 5 km of vertical offset must be attributed to extensional deformation. The Brenner Fault itself is barely folded, its dip varies between 20 and 70°, and it crosscuts the upright folds of the western Tauern Window. Given the offset of 5 km, the dip of the fault constrains the extensional displacement to be between 2 and 14 km. We conclude that the Tauern Window was exhumed primarily by folding and erosion, not by extensional unroofing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Axen GJ, Bartley JM, Selverstone J (1995) Structural expression of a rolling hinge in the footwall of the Brenner line normal fault, Eastern Alps. Tectonics 14:1380–1392

    Article  Google Scholar 

  • Axen GJ, Selverstone J, Byrne T, Fletcher JM (1998) If the strong crust leads, will the weak crust follow? GSA Today 12:1–8

    Google Scholar 

  • Behrmann JH (1988) Crustal-scale extension in a convergent orogen: the sterzing-steinach mylonite zone in the Eastern Alps. Geodynamica Acta 2:63–73

    Google Scholar 

  • Block L, Royden LH (1990) Core complex geometries and regional scale flow in the lower crust. Tectonics 9:557–567

    Article  Google Scholar 

  • Brandner R, Reiter F, Töchterle A (2008) Überblick zu den Ergebnissen der geologischen Vorerkundung für den Brenner-Basistunnel. Geo Alp 5:165–174

    Google Scholar 

  • Cassinis R (2006) Reviewing pre-TRANSALP DSS models. Tectonophysics 414:79–86

    Article  Google Scholar 

  • Castello B, Selvaggi G, Chiarabba C, Amato A (2006) CSI Catalogo della sismicità italiana 1981–2002, versione 1.1. INGV-CNT, Roma. http://csi.rm.ingv.it

  • Cornelius HP (1940) Zur Auffassung der Ostalpen im Sinne der Deckenlehre. Z Deutsch Geol Ges 92:271–312

    Google Scholar 

  • Davy PH, Cobbold PR (1988) Indentation tectonics in nature and experiments 1. Experiments scaled for gravity. Bull Geol Inst Uppsala 14:129–141

    Google Scholar 

  • Ebbing J, Braitenberg C, Götze H-J (2001) Forward and inverse modelling of gravity revealing insight into crustal structure of the Eastern Alps. Tectonophysics 337:191–208

    Article  Google Scholar 

  • Exner C (1962) Sonnblicklamelle und Mölltallinie. Jahrb Geol BA 105:273–286

    Google Scholar 

  • Farr TG et al (2007) The shuttle radar topography mission. Rev Geophys 45:RG2004. doi:10.1029/2005RG000183

    Article  Google Scholar 

  • Fodor LI et al (2008) Miocene emplacement and rapid cooling of the Pohorje pluton at the Alpine-annonian-Dinaridic junction, Slovenia. Swiss J Geosci 101:255–271. doi:10.1007/s00015-008-1286-9

    Article  Google Scholar 

  • Frisch W, Dunkl I, Kuhlemann J (2000) Post-collisional orogen-parallel large-scale extension in the Eastern Alps. Tectonophysics 327:239–265

    Article  Google Scholar 

  • Fügenschuh B, Seward D, Mantckelow N (1997) Exhumation in a convergent orogen: the western Tauern Window. Terra Nova 9:213–217

    Article  Google Scholar 

  • Genser J, Neubauer F (1989) Low angle normal faults at the eastern margin of the Tauern Window (Eastern Alps). Mitt Öst Geol Ges 81:233–243

    Google Scholar 

  • Giese P, Buness H (1992) Moho depth. In: Blundell D, Freeman R, Mueller St (eds) A continent revealed: the European geotraverse. Cambridge University Press, NY

    Google Scholar 

  • Glodny J, Ring U, Kühn A (2008) Coeval high-pressure metamorphism, thrusting, strike slip, and extensional shearing in the Tauern Window, Eastern Alps. Tectonics 27:TC4004. doi:10.1029/2007TC002193

    Article  Google Scholar 

  • Grundmann G, Morteani G (1985) The young uplift and thermal history of the central Eastern Alps (Austria, Italy), evidence from apatite fission track ages. Jahrb Geol BA 128:197–216

    Google Scholar 

  • Handy MR, Babist J, Konrad M, Rosenberg CL, Wagner R (2005) Mechanical coupling, decoupling and strain partitioning during transpression along the periadriatic fault system (european Alps). Geol Soc Lond 243:249–276

    Article  Google Scholar 

  • Hitz L (1994), Crustal structure at the transition between Central and Eastern Alps: processing, 3-D modelling and interpretation of a network of deep seismic profiles. PhD thesis, University of Berlin

  • Hoernes S, Friedrichsen H (1974) Oxygen isotope studies on metamorphic rocks of the western Hohe Tauern area (Austria). Schweiz Min Petr Mitt 54:769–788

    Google Scholar 

  • Hoinkes G, Koller F, Rantitsch G, Dachs E, Hoånck V, Neubauer F, Schuster R (1999) Alpine metamorphism of the Eastern Alps. Schweiz Mineral Petrogr Mitt. 79:155–181

    Google Scholar 

  • Johnson MRW (2002) Shortening budgets and the role of continental subduction during the India–Asia collision. Earth Sci Rev 59:101–123

    Article  Google Scholar 

  • Keller LM, Fügenschuh B, Hess M, Schneider B, Schmid SM (2006) Simplon fault zone in the western and central Alps: mechanism of neogene faulting and folding revisited. Geology 34:317–320. doi:10.1130/G22256.1

    Article  Google Scholar 

  • Kummerow J, Kind R, Oncken O, Giese P, Ryberg T, Wylegall K, Scherbaum F, TRANSALP Working Group (2004) A natural and controlled source seismic profile through the Eastern Alps: TRANSALP. Earth Planet Sci Lett 225:115–129

    Article  Google Scholar 

  • Kurz W, Neubauer F (1996) Deformation partitioning during updoming of the Sonnblick area in the Tauern Window (Eastern Alps, Austria). J Struct Geol 18:1327–1343

    Article  Google Scholar 

  • Lammerer B, Weger M (1998) Footwall uplift in an orogenic wedge: the Tauern Window in the Eastern Alps of Europe. Tectonophysics 285:213–230

    Article  Google Scholar 

  • Lenhardt WA, Freudenthaler CH, Lippitsch R, Fiegweil E (2007) Focal-depth distributions in the Eastern Alps based on macroseismic data. Austrian J Earth Sci 100:66–79

    Google Scholar 

  • Linzer H-G, Decker K, Peresson H, Dell’Mour R, Frisch W (2002) Balancing orogenic float of the Eastern Alps. Tectonophysics 354:211–237

    Article  Google Scholar 

  • Luth S, Willingshofer E (2008) Mapping of the post-collisional cooling history of the Eastern Alps. Swiss J Geo Sci 101(Suppl 1):207–223. doi:10.1007/s00015-008-1294-9

    Article  Google Scholar 

  • Mann P (2007) Global catalogue, classification and tectonic origins of restraining- and releasing bends on active and ancient strike-slip fault-systems. In: Cunningham WD, Mann P (eds) Geol Soc Lond 290. Tectonics of strike-slip restraining- and releasing bends

  • Molnar P, Tapponnier P (1977) Relation of the tectonics of eastern China to the India–Eurasia collision: an application of slipline field theory to large scale continental tectonics. Geology 5(4):212–216

    Article  Google Scholar 

  • Neubauer F, Genser J, Kurz W, Wang X (1999) Exhumation of the Tauern Window, Eastern Alps. Phys Chem Earth A 24:675–680

    Article  Google Scholar 

  • Oberhänsli R, Goffé B (2004) Metamorphic structure of the Alps. Mitteilungen der Österreichischen Mineralogischen Gesellschaft 149:115–199

    Google Scholar 

  • Pazzaglia FJ, Selverstone J, Roy M, Steffen K, Newland-Pearce S, Knipsher W, Pearce J (2007) Geomorphic expression of mid-crustal extension in convergent orogens. Tectonics 26:TC6010. doi:10.1029/2006TC001961

    Article  Google Scholar 

  • Piber A, Tropper P, Mirwald PW (2008) The metamorphic evolution of the patscherkofel crystalline complex (Tyrol, Eastern Alps, Austria). Austrian J Earth Sci 101:27–35

    Google Scholar 

  • Polinski RK, Eisbacher GH (1992) Deformation partitioning during polyphase oblique convergence in the Karawanken mountains, south Eastern Alps. J Struct Geol 14:1203–1213

    Article  Google Scholar 

  • Prey S (1977) Gelegenheitsbeobachtungen im Brennermesozoikum in der Umgebung von Trins (Gschnitztal, Tirol). Verh Geol BA, pp 337–347

  • Prey S (1989) Ein steilstehendes Störungssystem als Westbegrenzung des Tauernfensters. J Geol BA 132(Heft 4 Suppl):745–749

    Google Scholar 

  • Ratschbacher L, Merle O, Davy P, Cobbold P (1991) Lateral extrusion in the Eastern Alps. Part 1: boundary conditions and experiments scaled for gravity. Tectonics 10:245–256

    Article  Google Scholar 

  • Reiners PW, Brandon MT (2006) Using thermochronology to understand orogenic erosion. Annu Rev Earth Planet Sci 34:419–466

    Article  Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Reconstruction of the tectonic evolution of the western Mediterranean since the Oligocene. In: Rosenbaum G, Lister GS (eds) Reconstruction of the evolution of the Alpine-Himalayan orogen. J Virtual Explor 8:107–130

  • Rosenberg CL, Schneider S (2008) The western termination of the SEMP fault (Eastern Alps) and its bearing on the exhumation of the Tauern Window. In: Siegesmund S, Fügenschuh B, Froitzheim N (eds) Tectonic aspects of the alpine-dinaride-carpathian system. Geol Soc Lond 298:197–218

  • Rosenberg CL, Berger A (2009) On the causes and modes of exhumation and lateral growth of the Alps. Tectonics 28:TC6001. doi:10.1029/2008TC002442

    Article  Google Scholar 

  • Rosenberg CL, Berger A (2010) Correction to on the causes and modes of exhumation and lateral growth of the Alps. Tectonics 29:T1C001. doi:10.1029/2009TC002633

    Article  Google Scholar 

  • Rosenberg CL, Brun J-P, Gapais D (2004) An indentation model of the Eastern Alps and the origin of the Tauern Window. Geology 32:997–1000

    Google Scholar 

  • Rosenberg CL, Brun J-P, Cagnard F, Gapais D (2007) Oblique indentation in the Eastern Alps: insights from laboratory experiments. Tectonics 26:33. doi:10.1029/2006tc001960

    Article  Google Scholar 

  • Royden LH (1993) Evolution of retreating subduction boundaries formed during continental collision. Tectonics 12:629–638

    Article  Google Scholar 

  • Royden LH, Horvath F, Burchfiel BC (1982) Transform faulting, extension, and subduction in the carpathian pannonian region. Geol Soc Am Bull 93:717–725

    Article  Google Scholar 

  • Scharf A, Schmid S, Handy M (2010) Coeval folding, extensional and strike-slip faulting at the eastern end of an axial culmination in the Tauern Window (Eastern Alps). Geophy Res Abstr 12:EGU2010–EGU8095

    Google Scholar 

  • Schmid SM, Fügenschuh B, Kissling E, Schuster R (2004) Tectonic map and overall architecture of the Alpine orogen. Eclogae Geol Helv 97:93–117

    Article  Google Scholar 

  • Schmidegg O (1953) Die Silltalstörung und das Tonvorkommen bei der Stefansbrücke. Verhandlungen der geologischen Bundesanstalt

  • Schmidegg O (1957) Neues zur Geologie des Brenner Mesozoikums (Blaserdecke und Serleskamm). Mitt Geol Ges Wien 48:271–295

    Google Scholar 

  • Schmidegg O (1964) Die Ötztaler Schubmasse und ihre Umgebung. Verh Geol B-A 1:27–37

  • Schneider S, Rosenberg C, Hammerschmidt K (2010) The western tauernwindow (Eastern Alps): timing and interplay of folds and sinistral shear zones as result of South-Alpine indentation. Geophy Res Abstr 12:EGU2010–EGU15113

    Google Scholar 

  • Selverstone J (1985) Petrologic constraints on imbrication, metamorphism, and uplift in the sw Tauern Window, Eastern Alps. Tectonics 4:687–704

    Article  Google Scholar 

  • Selverstone J (1988) Evidence for east–west crustal extension in the Eastern Alps: implications for the unroofing history of the Tauern Window. Tectonics 7:87–105

    Article  Google Scholar 

  • Selverstone J (2005) Are the Alps collapsing? Annual Rev Earth Plan Sci 33:113–132

    Article  Google Scholar 

  • Selverstone J, Axen G, Bartley J (1995) Fluid inclusion constraints on the kinematics of footwall uplift beneath the Brenner line normal fault, Eastern Alps. Tectonics 14:264–278

    Article  Google Scholar 

  • Sengör AMC, Görür N, Aroglu FS (1985) Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In: Biddle KT, Chrisitie-Blick N (eds) Strike-slip deformation, basin formation, and sedimentation. Soc Econ Paleont Min Spec Pub 37 (in honor of Crowell JC), pp 227–264

  • Sperner B, Ratschbacher L, Nemcok M (2002) Interplay between subduction retreat and lateral extrusion: tectonics of the western carpathians. Tectonics 21:24. doi:10.1029/2001TC901028

    Article  Google Scholar 

  • Swiss Seismological Service (2002) ECOS: earthquake catalog of Switzerland. ECOS report to PEGASOS, version 31. 3. 2002. SED, Zürich

    Google Scholar 

  • Trepmann CA, Stöckhert B, Chakraborty S (2004) Oligocene trondhjemitic dikes in the Austroalpine basement of the Pfunderer Berge, Südtirol–level of emplacement and metamorphic overprint. Eur J Miner 16:641–659

    Article  Google Scholar 

  • Viola G, Mancktelow NS, Seward D (2001) Late oligocene-neogene evolution of Europe–Adria collision: new structural and geochronological evidence from the Giudicarie fault system (Italian Eastern Alps). Tectonics 20:999–1020

    Article  Google Scholar 

  • Waldhauser F, Kissling E, Ansorge J, Mueller S (1998) Three-dimensional interface modelling with two-dimensional seismic data: the Alpine crust-mantle boundary. Geophys J Int 135:264–278

    Article  Google Scholar 

  • Waldhauser F, Lippitsch R, Kissling E, Ansorge J (2002) High-resolution teleseismic tomography of upper-mantle structure using an a priori three-dimensional crustal model. Geophys J Int 150:403–414

    Article  Google Scholar 

  • Wawrzyniec T, Selverstone J, Axen G (2001) Styles of footwall uplift along the Simplon and Brenner normal fault systems, central and Eastern Alps. Tectonics 20:748–770

    Article  Google Scholar 

  • Wernicke B (1981) Low angle normal faults in the basin and range province: nappe tectonics in an extending orogen. Nature 291:645–648

    Article  Google Scholar 

  • ZAMG (2009) Austrian earthquake catalogue (excerpt). Computer file. Department for Geophysics, Zentralanstalt für Meteorologie und Geodynamik, Wien

    Google Scholar 

  • Ziegler P, Dèzes P (2007) Cenozoic uplift of variscan massifs in the alpine foreland: timing and controlling mechanisms. Glob Planet Chang 58:237–269

    Article  Google Scholar 

Download references

Acknowledgments

Financial support by the DFG (Ro 2177/5) is acknowledged. R. Brandner kindly sent us copies of the BBT cross section. M. Rockenschaub sent us unpublished versions of the Austrian map ‘Blatt Sterzing’. A. Bertrand, K. Hammerschmidt, M. Handy, A. Scharf, S. Schneider, S. Schmid and Kamil Ustaszewski did not always agree on the interpretations of this paper, but helped us clarify many ideas of the manuscript. The constructive reviews of M. Handy, M. Rockenschaub and B. Lammerer are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Rosenberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, C.L., Garcia, S. Estimating displacement along the Brenner Fault and orogen-parallel extension in the Eastern Alps. Int J Earth Sci (Geol Rundsch) 100, 1129–1145 (2011). https://doi.org/10.1007/s00531-011-0645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-011-0645-3

Keywords

Navigation