Skip to main content
Log in

New terrestrial heat flow map of Europe after regional paleoclimatic correction application

  • Short Note
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Heat flow variations with depth in Europe can be explained by a model of surface temperature changes >10°C. New heat flow map of Europe is based on updated database of uncorrected heat flow values to which paleoclimatic correction is applied across the continent. Correction is depth dependent due to a diffusive thermal transfer of the surface temperature forcing of which glacial–interglacial history has the largest impact. It is obvious that large part of the uncorrected heat flow values in the existing heat flow databases from wells as shallow as few hundreds of meters is underestimated. This explains some very low uncorrected heat flow values 20–30 mW/m2 in the shields and shallow basin areas of the craton. Also, heat flow values in other areas including orogenic belts are likely underestimated. Based on the uncorrected and corrected heat flow maps using 5 km × 5 km grid, we have calculated average heat flow values (uncorrected heat flow: 56.0 mW/m2; SD 20.3 mW/m2 vs. corrected heat flow: 63.2 mW/m2; SD 19.6 m/Wm2) and heat loss for the continental part. Total heat loss is 928 E09 W for the uncorrected values versus corrected 1050 E09 W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Bodri L, Čermak V (2007) Borehole climatology—a new method on how to reconstruct climate. Elsevier, Amsterdam

    Google Scholar 

  • Čermak V (1971) Underground temperature and inferred climatic temperature of the past millennium. Paleogeogr Paleoeclimatol Paleoecol 10:1–19

    Article  Google Scholar 

  • Čermak V, Haenel R (1988) Geothermal maps. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer, Dordrecht, pp 261–308

    Google Scholar 

  • Čermak V, Hurtig E (1979) Heat flow map of Europe. In: Čermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin

    Google Scholar 

  • Clauser C, Giese P, Huenges E, Kohl T, Lehmann H, Rybach L, Safanda J, Wilhelm H, Windloff K, Zoth G (1997) The thermal regime of the crystalline continental crust: implications from the KTB. J Geophys Res 102:18417–18441

    Article  Google Scholar 

  • Demezhko DYu, Golovanova IV (2007) Climatic changes in the Urals over the past millennium—an analysis of geothermal and meteorological data. Clim Past 3:237–242

    Article  Google Scholar 

  • Demezhko DYu, Utkin VI, Duchkov AD, Ryvkin DG (2006) Geothermic estimates of the amplitudes of Holocene warming in Europe. Doklady Earth Sci 407:259–261

    Article  Google Scholar 

  • Forsstrom P-L (2005) Through a glacial cycle: simulation of the Eurasian ice sheet dynamics during the last glaciation. Annales Academiae Scientiarum Fennicae Geologica- Geographica 168, Helsinki 2005, Suomalainen Tiedeakatemia

  • Forsstrom P-L, Greve R (2004) Simulation of the Eurasian ice sheet dynamics during the last glaciation. Glob Planet Change 42:59–81

    Article  Google Scholar 

  • Galushkin Yu (1997) Numerical simulation of permafrost evolution as a part of sedimentary basin modeling: permafrost in the Pliocene-Holocene climate history of the Urengoy field in the West Siberian basin. Can J Earth Sci 34:935–948

    Article  Google Scholar 

  • Gosnold W, Majorowicz J, Šafanda J, Szewczyk J (2005) Has northern hemisphere heat flow been underestimated? Joint assembly, AGU, SEG, NABS and SPD/AAS Abstracts, New Orleans, May 23–27, 2005

  • Grosswald MG (1996) Evidence for a glacial invasion of the East Siberian coasts from the adjacent Arctic shelf. Doklady Akademii Nauk 350(4):535–540

    Google Scholar 

  • Hotchkiss WO, Ingersoll LR (1934) Post-glacial time calculations from recent geothermal measurements in the Calumet copper mines. J Geol 42:113–142

    Article  Google Scholar 

  • Hughes TJ, Denton GH, Grosswald MG (1977) Was there a late wurm arctic ice sheet? Nature 266:596–602

    Article  Google Scholar 

  • Hurtig E, Čermak V, Haenel R, Zui VI (eds) (1992) Geothermal atlas of Europe. H. Haack Verlagsgessellschaft mbH und Geogr.-Kartogr. Anstalt, Gotha

  • Jessop A (1971) The distribution of glacial perturbation of heat flow in Canada. Can J Earth Sci 8:162–166

    Article  Google Scholar 

  • Kageyama M, Peyron O, Pinot S, Tarasov P, Guiot J, Joussaume S, Ramstein G (2001) The last glacial maximum climate over Europe and western Siberia: a PMIP comparison between models and data. Clim Dyn 17:23–43

    Article  Google Scholar 

  • Kukkonen I, Joeleht A (2003) Weichselian temperatures from geothermal heat flow data. J Geophys Res 108(B3): 2163, 325. doi:10.1029/2001JB001579

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in Alaska. Science 234:689–696

    Article  Google Scholar 

  • Majorowicz JA (2009) The climate of Europe in recent centuries in the context of the climate of mid to high latitude northern hemisphere from borehole temperature logs. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The polish climate in the European context: an historical overview. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Majorowicz J, Safanda J (2008) Heat flow variation with depth in Poland: evidence from equilibrium temperature logs in 2.9-km deep well Torun-1. Int J Earth Sci 97:307–315

    Article  Google Scholar 

  • Mottaghy D, Majorowicz J, Rath V (2009) Ground surface temperature histories reconstructed from boreholes in Poland: implications for spatial variability. In: Przybylak R, Majorowicz J, Brazdil R, Kejna M (eds) The polish climate in the European context: an historical overview. Springer, Berlin. doi:10.1007/978-90-481-3167-9_17

  • Norden B, Förster A, Balling N (2004) Heat flow and lithospheric thermal regime in the Northeast German Basin. Tectonophysics 460:215–229

    Article  Google Scholar 

  • Šafanda J, Majorowicz J (2009) The climate of Poland in recent centuries—a synthesis of current knowledge: geophysical data. In: Przybylak R, Majorowicz J, Brázdil R, Kejna M (eds) The Polish climate in the European context: an historical overview. Springer, Berlin/Heidelberg/New York (in press)

    Google Scholar 

  • Šafanda J, Rajver D (2001) Signature of the last ice age in the present subsurface temperatures in the Czech Republic and Slovenia. Glob Planet Change 29:241–257

    Article  Google Scholar 

  • Šafanda J, Szewczyk J, Majorowicz J (2004) Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet. Geophys Res Lett 31:L07211. doi:10.1029/2004GL019547

    Article  Google Scholar 

  • Velichko AA (ed) (2002) Dynamics of terrestrial landscape components and inner marine basins of the Northern Eurasia during the last 130,000 years, Atlas-monograph, GEOS, Moscow, 296 pp (in Russian)

Download references

Acknowledgments

First author (JM) would like to thank Prof. Will Gosnold of the University of North Dakota, Dr. Jan Safanda (Czech Academy of Science and Dr. Volker Rath of the Dpt. of Earth Sciences, Astronomy and Astrophysics Faculty of Physical Sciences Universidad Complutense de Madrid, for stimulating discussions. We would like to thank Dr. M. Fernandez for help with the Iberian peninsula data. Dr. Vladimir Cermak is acknowledged for his comments and having me (JM) started on the European heat flow mapping team in early 70th. V. Cermak editorial comments and helpful comments of anonymous reviewers led to improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Majorowicz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majorowicz, J., Wybraniec, S. New terrestrial heat flow map of Europe after regional paleoclimatic correction application. Int J Earth Sci (Geol Rundsch) 100, 881–887 (2011). https://doi.org/10.1007/s00531-010-0526-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-010-0526-1

Keywords

Navigation