Skip to main content

Advertisement

Log in

Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger)

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Subglacial deformation is crucial to reconstructing glacier dynamics. Sediments associated with the Late Ordovician ice sheet in the Djado Basin, Niger, exhibit detailed structures of the subglacial shear zone. Three main types of subglacial shear zones (SSZ) are discriminated. The lowermost SSZ, developed on sandstones, displays Riedel macrostructures and cataclastic microstructures. These resulted from brittle deformation associated with strong glacier/bed coupling and low pore-water pressure. Where they developed on a clay-rich bed, the overlying SSZ display S–C to S–C′ fabrics, sheath folds, and dewatering structures. These features indicate high ductile shear strain and water overpressure. On fine-grained sand beds, the SSZ exhibit homogenized sand units with sand stringers, interpreted as fluidized sliding beds. The succession of subglacial deformation processes depends on fluid-pressure behavior in relation to subglacial sediment permeability. Fluid overpressure allows subglacial sediment shear strength and ice/bed coupling to be lowered, leading to ice streaming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  • Allen JRL (1982) Sedimentary structures: their character and physical basis, vol I: 594 p, vol II: 644 p. Elsevier, New York

  • Alley RB, Blankenship DD, Bentley CR, Rooney ST (1986) Deformation till beneath Ice Stream B, West Antarctica. Nature 322:57–59. doi:10.1038/322057a0

    Article  Google Scholar 

  • Anandakrishnan S, Blankenship DD, Alley RB, Stoffa PL (1998) Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations. Nature 394:62–65. doi:10.1038/27889

    Article  Google Scholar 

  • Aris Y, Coiffait PE, Guiraud M (1998) Characterisation of Mesozoic–Cenozoic deformations and palaeostress fields in the Central Constantinois, northeast Algeria. Tectonophysics 290:59–85. doi:10.1016/S0040-1951(98)00012-2

    Article  Google Scholar 

  • Bamber JL, Ferraccioli F, Joughin I, Shepherd T, Rippin DM, Siegert MJ, Vaughan DG (2006) East Antarctic ice stream tributary underlain by major sedimentary basin. Geology 34:33–36. doi:10.1130/G22160.1

    Article  Google Scholar 

  • Bell RE, Blankenship DD, Finn CA, Morse DL, Scambos TA, Brozena JM, Hodge SM (1998) Influence of subglacial geology on the onset of a West Antarctic ice stream from aerophysical observations. Nature 394:58–62. doi:10.1038/27883

    Article  Google Scholar 

  • Benn DI, Evans DJA (1996) The interpretation and classification of subglacially deformed material. Quat Sci Rev 15:23–52. doi:10.1016/0277-3791(95)00082-8

    Article  Google Scholar 

  • Benn DI, Evans DJA (1998) Glaciers and glaciation. Edward Arnold, London

    Google Scholar 

  • Bennett MR (2003) Ice streams as the arteries of an ice sheet: their mechanics, stability and significance. Earth Sci Rev 61:309–339. doi:10.1016/S0012-8252(02)00130-7

    Article  Google Scholar 

  • Bennett MR, Waller RI, Midgley NG, Huddart D, Gonzalez S, Cook SJ, Tomio A (2003) Subglacial deformation at sub-freezing temperatures? Evidence from Hagafellsjökull-Eystri, Iceland. Quat Sci Rev 22:915–923. doi:10.1016/S0277-3791(03)00007-6

    Article  Google Scholar 

  • Berthé D, Choukroune P, Jegouzo P (1979) Orthogneiss, mylonite and non-coaxial deformation of granites: the example of the South Armorican Shear Zone. J Struct Geol 1:31–42. doi:10.1016/0191-8141(79)90019-1

    Article  Google Scholar 

  • Bestmann M, Rice AHN, Langenhorst F, Grasemann B, Heidelbach F (2006) Subglacial bedrock welding associated with glacial earthquakes. J Geol Soc Lond 163:417–420. doi:10.1144/0016-764920-164

    Article  Google Scholar 

  • Beuf S, Biju-Duval B, de Charpal O, Gariel O, Bennacef A (1971) Les grès du Paléozoïque inférieur au Sahara, sédimentation et discontinuités, évolution structurale d’un craton. Publications de l’I.F.P, Paris

    Google Scholar 

  • Biju-Duval B, Deynoux M, Rognon P (1974) Essai d’interprétation des “fractures en gradins” observées dans les formations glaciaires précambriennes et ordoviciennes du Sahara. Rev Geogr Phys Geol Dyn 16:503–512

    Google Scholar 

  • Blankenship DD, Bentley CR, Rooney ST, Alley RB (1986) Seismic measurements reveal a saturated porous layer beneath an active Antarctic ice stream. Nature 322:54–57. doi:10.1038/322054a0

    Article  Google Scholar 

  • Boulton GS (1996) Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. J Glaciol 42:43–62

    Google Scholar 

  • Boulton GS, Caban PE (1995) Groundwater flow beneath ice sheets: part II—its impact on glacier tectonic structures and moraine formation. Quat Sci Rev 14:563–587. doi:10.1016/0277-3791(95)00058-W

    Article  Google Scholar 

  • Boulton GS, Hindmarsh RCA (1987) Sediment deformation beneath glaciers; rheology and geological consequences. J Geophys Res 92:9059–9082. doi:10.1029/JB092iB09p09059

    Article  Google Scholar 

  • Boulton GS, Jones AS (1979) Stability of temperate ice caps and ice sheets resting on beds of deformable sediment. J Glaciol 24:29–42

    Google Scholar 

  • Boulton GS, van der Meer JJM, Hart JK, Beets D, Ruegg GHD, van der Wateren FM, Jarvis J (1996) Till and moraine emplacement in a deforming bed surge–an example from a marine environment. Quat Sci Rev 15:961–987. doi:10.1016/0277-3791(95)00091-7

    Article  Google Scholar 

  • Boyce JI, Eyles N (1991) Drumlins carved by deforming till streams below the Laurentide ice sheet. Geology 19:787–790. doi:10.1130/0091-7613(1991)019<0787:DCBDTS>2.3.CO;2

    Article  Google Scholar 

  • Brenchley PJ, Marshall JD, Robertson GAF, Long DGF, Meidla T, Hints L, Anderson TF (1994) Bathymetric and isotopic evidence for a short-lived Ordovician glaciation in a greenhouse period. Geology 22:295–298. doi:10.1130/0091-7613(1994)022<0295:BAIEFA>2.3.CO;2

    Article  Google Scholar 

  • Brewer R (1976) Fabric and mineral analysis of soils. Krieger, Huntington

    Google Scholar 

  • Buoncristiani J-F, Guiraud M, Denis M (2007) Mise en évidence d’une dynamique de fleuves de glace durant la glaciation ordovicienne par l’enregistrement géomorphologique. Houille Blanche 3:79–85. doi:10.1051/lhb:2007039

    Article  Google Scholar 

  • Byrne T, Fisher D (1990) Evidence of a weak and overpressured decollement beneath sediment-dominated accretionary prisms. J Geophys Res 95:9081–9097. doi:10.1029/JB095iB06p09081

    Article  Google Scholar 

  • Clark CD, Stokes CR (2003) The palaeo-ice stream landsystem. In: Evans DJA (ed) Glacial landsystems. Arnold, London, pp 204–227

    Google Scholar 

  • Clark CD, Tulaczyk S, Stokes CR, Canals M (2003) A groove-ploughing theory for the production of mega-scale glacial lineations, and implications for ice-stream mechanics. J Glaciol 49:240–256. doi:10.3189/172756503781830719

    Article  Google Scholar 

  • Cobbold PR, Quinquis H (1980) Development of sheath folds in shear regimes. J Struct Geol 2:119–126. doi:10.1016/0191-8141(80)90041-3

    Article  Google Scholar 

  • Denis (2007) Interactions entre glaciation—déglaciation, déformation et enregistrement stratigraphique. Application à l’Ordovicien supérieur-Silurien du bassin du Djado (Niger) et des bassins d’Afrique du Nord. Ph.D. Thesis, Université de Bourgogne, 427 p (unpublished)

  • Denis M, Buoncristiani J-F, Konaté M, Ghienne J-F, Guiraud M (2007a) Hirnantian glacial and deglacial record in SW Djado Basin (NE Niger). Geodin Acta 20:177–195. doi:10.3166/ga.20.177-195

    Article  Google Scholar 

  • Denis M, Buoncristiani J-F, Konaté M, Guiraud M (2007b) The origin and glaciodynamic significance of sandstone ridge networks from the Hirnantian glaciation of the Djado Basin (Niger). Sedimentology 54:1225–1243. doi:10.1111/j.1365-3091.2007.00879.x

    Article  Google Scholar 

  • Deynoux M (1980) Les formations glaciaires du Précambrien terminal et de la fin de l’Ordovicien en Afrique de l’Ouest. Deux exemples de glaciation d’inlandsis sur une plate-forme stable. Doctorat ès Sciences thesis, Aix-Marseille (unpublished)

  • Deynoux M, Ghienne J-F (2004) Late Ordovician glacial pavements revisited—a reappraisal of the origin of striated surfaces. Terra Nova 16:95–101. doi:10.1111/j.1365-3121.2004.00536.x

    Article  Google Scholar 

  • Engelhardt H, Kamb B (1998) Sliding velocity of ice stream B. J Glaciol 44:223–230

    Google Scholar 

  • Engelhardt H, Humphrey NF, Kamb B, Fahnestock M (1990) Physical conditions at the base of a fast moving Antarctic ice stream. Science 248:57–59. doi:10.1126/science.248.4951.57

    Article  Google Scholar 

  • Etchecopar A, Vasseur G, Daignières M (1981) An inverse problem in microtectonics for the determination of stress tensors from fault striation analysis. J Struct Geol 3:51–65. doi:10.1016/0191-8141(81)90056-0

    Article  Google Scholar 

  • Evans DJA, Phillips ER, Hiemstra JF, Auton CA (2006) Subglacial till: formation, sedimentary characteristics and classification. Earth Sci Rev 78:115–176. doi:10.1016/j.earscirev.2006.04.001

    Article  Google Scholar 

  • Eyles N (2008) Glacio-epochs and the supercontinent cycle after ~3 Ga: tectonic boundary conditions for glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 258:89–129. doi:10.1016/j.palaeo.2007.09.021

    Article  Google Scholar 

  • Eyles N, Boyce JI (1998) Kinematic indicators in fault gouge: tectonic analog for soft-bedded ice sheets. Sediment Geol 116:1–12. doi:10.1016/S0037-0738(97)00122-X

    Article  Google Scholar 

  • Fisher U, Clarke GKC (1997) Stick-slip sliding behaviour at the base of a glacier. Ann Glaciol 24:390–396

    Google Scholar 

  • Ghienne J-F (2003) Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa. Palaeogeogr Palaeoclimatol Palaeoecol 189:117–145. doi:10.1016/S0031-0182(02)00635-1

    Article  Google Scholar 

  • Ghienne J-F, Le Heron DP, Moreau J, Denis M, Deynoux M (2007) The Late Ordovician glacial sedimentary systems of the North Gondwana platform. In: Hambrey MJ, Christoffersen P, Glasser NF, Hubbard B (eds) Glacial sedimentary processes and products. International association of sedimentologists series. Blackwell, Special Publication of the International Association of Sedimentologists, Oxford, pp 295–320

    Google Scholar 

  • Glover T, Adamson K, Whittington RJ, Fitches B, Craig J (2000) Evidence for soft-sediment deformation—the Duwaysah Slide of the Gargaf Arch, Central Libya. In: Sola MA, Worsley D (eds) Geological exploration in Murzuq Basin. Elsevier, Amsterdam, pp 417–430

    Chapter  Google Scholar 

  • Gradstein FM, Ogg JG, Smith AG, Bleeker W, Lourens LJ (2004) A new geologic time scale with special reference to Precambrian and Neogene. Episodes 27:83–100

    Google Scholar 

  • Guiraud M, Seguret M (1986) Microfailles hydroplastiques liées à la compaction des sédiments fluvio-deltaïques du bassin Wealdien de Soria (Espagne). C R Acad Sci Paris 302:793–798

    Google Scholar 

  • Guiraud M, Seguret M (1987) Soft-sediment microfaulting related to compaction within the fluvio-deltaic infill of the Soria strike-slip basin (northern Spain). In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks, vol 29. Special Publication of the Geological Society of London, London, pp 123–136

  • Guiraud M, Laborde O, Philip H (1989) Characterization of various types of deformation and their corresponding deviatoric stress tensors using microfault analysis. Tectonophysics 170:289–316. doi:10.1016/0040-1951(89)90277-1

    Article  Google Scholar 

  • Harris SE (1943) Friction cracks and the direction of glacial movement. J Geol 51:244–258

    Article  Google Scholar 

  • Hart JK (2006) An investigation of subglacial processes at the microscale from Briksdalsbreen, Norway. Sedimentology 53:125–146. doi:10.1111/j.1365-3091.2005.00758.x

    Article  Google Scholar 

  • Hart JK, Smith B (1997) Subglacial deformation associated with fast ice flow, from the Columbia Glacier, Alaska. Sediment Geol 111:177–197. doi:10.1016/S0037-0738(97)00014-6

    Article  Google Scholar 

  • Hiemstra JF, Rijsdijk KF (2003) Observing artificially induced strain: implications for subglacial deformation. J Quat Sci 18:373–383. doi:10.1002/jqs.769

    Article  Google Scholar 

  • Hiemstra JF, van der Meer JJM (1997) Pore-water controlled grain fracturing as an indicator for subglacial shearing in tills. J Glaciol 43:446–454

    Google Scholar 

  • Hindmarsh RCA (1997) Deforming beds: viscous and plastic scales of deformation. Quat Sci Rev 16:1039–1056. doi:10.1016/S0277-3791(97)00035-8

    Article  Google Scholar 

  • Holland CH (1985) Lower Palaeozoic of north-western and west central Africa. Wiley, New York

    Google Scholar 

  • Hooke RL, Iverson NR (1995) Grain-size distribution in deforming subglacial tills: role of grain fracture. Geology 23:57–60. doi:10.1130/0091-7613(1995)023<0057:GSDIDS>2.3.CO;2

    Article  Google Scholar 

  • Huguen C, Guiraud M, Benkhelil J, Mascle J (2001) Synlithification deformation processes of the Cretaceous sediments of the Ivory Coast-Ghana transform margin: a way to detail the margin history. Tectonics 20:959–982. doi:10.1029/2001TC900015

    Article  Google Scholar 

  • Kamb B (2001) Basal zone of the West Antarctic ice streams and its role in lubrication of their rapid motion. In: Alley RD, Bindschadler R (eds) The West Antarctic ice sheet: behaviour and environment. Antarctic research series, vol 77. American Geophysical Union, Washington, pp 157–199

    Google Scholar 

  • Knight J (2002) Glacial sedimentary evidence supporting stick-slip basal ice flow. Quat Sci Rev 21:975–983. doi:10.1016/S0277-3791(01)00050-6

    Article  Google Scholar 

  • Konaté M, Guiraud M, Lang J, Yahaya M (2003) Sedimentation in the Kandi extensional basin (Benin and Niger): fluvial and marine deposits related to the Late Ordovician deglaciation in West Africa. J Afr Earth Sci 36:185–206. doi:10.1016/S0899-5362(03)00026-5

    Article  Google Scholar 

  • Labaume P, Maltman AJ, Bolton A, Teissier D, Ogawa Y, Takizawa S (1997) Scaly fabrics in sheared clays from the décollement zone of the Barbados accretionary prism. In: Shipley TH, Ogawa Y, Blum P, Bahr JM (eds) Proceedings of the ocean drilling program, scientific results, vol 156. Ocean Drilling Program, College Station, pp 59–77

  • Lang J, Yahaya M, el Hamet MO, Destombes JC, Cazoula M (1991) Dépôts glaciaires du Carbonifère inférieur à l’Ouest de l’Aïr (Niger). Geol Rundsch 80:611–622. doi:10.1007/BF01803689

    Article  Google Scholar 

  • Le Heron DP, Sutcliffe OE, Whittington RJ, Craig J (2005) The origins of glacially related soft-sediment deformation structures in Upper Ordovician glaciogenic rocks: implication for ice-sheet dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 218:75–103. doi:10.1016/j.palaeo.2004.12.007

    Article  Google Scholar 

  • Le Heron DP, Ghienne J-F, El Houicha M, Khoukhi Y, Rubino J-L (2007) Maximum extent of ice sheets in Morocco during the Late Ordovician glaciation. Palaeogeogr Palaeoclimatol Palaeoecol 245:200–226. doi:10.1016/j.palaeo.2006.02.031

    Article  Google Scholar 

  • Lowe DR (1975) Water escape structures in coarse-grained sediments. Sedimentology 22:157–204. doi:10.1111/j.1365-3091.1975.tb00290.x

    Article  Google Scholar 

  • Mandl G, Harkness RM (1987) Hydrocarbon migration by hydraulic fracturing. In: Jones ME, Preston RMF (eds) Deformation of sediments and sedimentary rocks. Special publication 29. Geological Society, Oxford, pp 39–53

    Google Scholar 

  • Menzies J (2000) Micromorphological analyses of microfabrics and microstructures, indicative of deformation processes, in glacial sediments. In: Maltman AJ, Hubbart B, Hambrey MJ (eds) Deformation of glacial material, vol 176. Geological Society Special Publication, London, pp 245–258

    Google Scholar 

  • Menzies J, van der Meer JJM, Rose J (2006) Till-as a glacial “tectomict”, its internal architecture, and the development of a “typing” method for till differentiation. Geomorphology 75:172–200

    Google Scholar 

  • Monod O, Kozlu H, Ghienne J-F, Dean WT, Günay Y, Le Hérissé A, Paris F, Robardet M (2003) Late Ordovician glaciation in southern Turkey. Terra Nova 15:249–257. doi:10.1046/j.1365-3121.2003.00495.x

    Article  Google Scholar 

  • Moreau J, Ghienne J-F, Le Heron DP, Rubino J-L, Deynoux M (2005) 440 Ma ice stream in North Africa. Geology 33:753–756. doi:10.1130/G21782.1

    Article  Google Scholar 

  • O'Brien PE, De Santis L, Harris PT, Domack E, Quilty PG (1999) Ice shelf grounding zone features of western Prydz Bay, Antarctica: sedimentary processes from seismic and sidescan images. Antarct Sci 11:78–91

    Article  Google Scholar 

  • Ò Cofaigh C, Dowdeswell JA, Allen CS, Hiemstra JF, Pudsey CJ, Evans J, Evans DJA (2005) Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream. Quat Sci Rev 24:709–740

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (2005) Microtectonics. Springer, Berlin

    Google Scholar 

  • Petit JP, Proust F, Tapponier P (1983) Critères de sens de mouvement sur les miroirs de failles en roches non calcaires. Bull Soc Geol France 25:589–608

    Google Scholar 

  • Phillips E (2006) Micromorphology of a debris flow deposit: evidence of basal shearing, hydrofracturing, liquefaction and rotational deformation during emplacement. Quat Sci Rev 25:720–738. doi:10.1016/j.quascirev.2005.07.004

    Article  Google Scholar 

  • Piotrowski JA, Kraus AM (1997) Response of sediment to ice sheet loading in northwestern Germany: effective stresses and glacier stability. J Glaciol 43:495–502

    Google Scholar 

  • Piotrowski JA, Tulaczyk S (1999) Subglacial conditions under the last ice sheet in northwest Germany: ice-bed separation and enhanced basal sliding? Quat Sci Rev 18:737–751. doi:10.1016/S0277-3791(98)00042-0

    Article  Google Scholar 

  • Piotrowski JA, Windelberg S (2003) Glazialtektonik weichselzeitlicher ablagerungen in Zentral-Fünen, Dänemark. Eiszeitalter Gegenwart 53:39–53

    Google Scholar 

  • Piotrowski JA, Larsen NK, Junge FW (2004) Reflections on soft subglacial beds as a mosaic of deforming and stable spots. Quat Sci Rev 23:993–1000. doi:10.1016/j.quascirev.2004.01.006

    Article  Google Scholar 

  • Piotrowski JA, Larsen NK, Menzies J, Wysota W (2006) Formation of subglacial till under transient bed conditions: deposition, deformation, and basal decoupling under a Weichselian ice sheet lobe, central Poland. Sedimentology 53:83–106. doi:10.1111/j.1365-3091.2005.00755.x

    Article  Google Scholar 

  • Ponce de Leon MI, Choukroune P (1980) Shear zones in the Iberian arc. J Struct Geol 2:63–68. doi:10.1016/0191-8141(80)90035-8

    Article  Google Scholar 

  • Rice AHN, Hofmann C-C (2000) Evidence for a glacial origin of Neoproterozoic III striations at Oaibaccannjar’ga, Finnmark, northern Norway. Geol Mag 137:355–366. doi:10.1017/S0016756800004222

    Article  Google Scholar 

  • Riedel W (1929) Zur Mechanik geologischer Brucherscheinungen. Zentralblatt für Mineralogie, Geologie und Paläontologie 1929B:354–368

  • Rognon P, Biju-Duval B, de Charpal O (1972) Modelés glaciaires dans l’Ordovicien supérieur saharien : phases d’érosion et glacio-tectonique sur la bordure N des Eglab. Rev Geogr Phys Geol Dyn 14:507–528

    Google Scholar 

  • Saltzman MR, Young SA (2005) Long-lived glaciation in the Late Ordovician? Isotopic and sequence-stratigraphic evidence from western Laurentia. Geology 33:109–112. doi:10.1130/G21219.1

    Article  Google Scholar 

  • Scotese CR, Boucot AJ, McKerrow WS (1999) Gondwanan palaeogeography and palaeoclimatology. J Afr Earth Sci 28:99–114. doi:10.1016/S0899-5362(98)00084-0

    Article  Google Scholar 

  • Sibson RH (1990) Conditions for fault-valve behaviour. In: Knipe RJ, Rutter EH (eds) Deformation mechanisms, rheology and tectonics, vol 54. Geological Society of London, Special Publication, pp 15–28

  • Stefenson EL, Maltman AJ, Knipe RJ (1994) Fluid flow in actively deforming sediments: “dynamic permeability” in accretionary prisms. In: Parnell J (ed) Geofluids, origin, migration and evolution of fluids in sedimentary basins. Geological Society of London, Special Publication 87, pp 113–125

  • Stokes CR, Clark CD (1999) Geomorphological criteria for identifying Pleistocene ice streams. Ann Glaciol 28:67–74. doi:10.3189/172756499781821625

    Article  Google Scholar 

  • Studinger M, Bell RE, Blankenship DD, Finn CA, Arko RA, Morse DL, Joughin I (2001) Subglacial sediments: a regional geological template for ice flow in Antarctica. Geophys Res Lett 28:3493–3496. doi:10.1029/2000GL011788

    Article  Google Scholar 

  • Sugden DE, John BS (1976) Glaciers and landscapes. Edward Arnold, London

    Google Scholar 

  • Sutcliffe OE, Dowdeswell JA, Whittington RJ, Theron JN, Craig J (2000a) Calibrating the Late Ordovician glaciation and mass extinction by the eccentricity of Earth’s orbit. Geology 28:967–970. doi:10.1130/0091-7613(2000)28<967:CTLOGA>2.0.CO;2

    Article  Google Scholar 

  • Sutcliffe OE, Adamson K, Ben Rahuma MM (2000) The geological evolution of the palaeozoic rocks of Western Libya: a review and field guide. Sedimentary basins of Libya, Second Symposium, Geology of Northwest Libya, Earth Science Society of Libya, Tripoli

  • Tulaczyk SM, Kamb B, Scherer RP, Engelhardt HF (1998) Sedimentary processes at the base of a West Antarctic ice stream: constraints from textural and compositional properties of subglacial debris. J Sediment Res 68:487–496

    Google Scholar 

  • Tulaczyk SM, Scherer RP, Clark CD (2001) A ploughing model for the origin of weak tills beneath ice streams: a qualitative treatment. Quat Int 86:59–70. doi:10.1016/S1040-6182(01)00050-7

    Article  Google Scholar 

  • Van Den Driessche J, Brun J-P (1987) Rolling structures at large shear strain. J Struct Geol 9:691–704. doi:10.1016/0191-8141(87)90153-2

    Article  Google Scholar 

  • van der Meer JJM (1993) Microscopic evidence of subglacial deformation. Quat Sci Rev 12:553–587. doi:10.1016/0277-3791(93)90069-X

    Article  Google Scholar 

  • van der Meer JJM (1997) Subglacial processes revealed by the microscope: particle and aggregate mobility in till. Quat Sci Rev 16:827–831. doi:10.1016/S0277-3791(97)00052-8

    Article  Google Scholar 

  • van der Meer JJM, Menzies J, Rose J (2003) Subglacial till: the deforming glacier bed. Quat Sci Rev 22:1659–1685. doi:10.1016/S0277-3791(03)00141-0

    Article  Google Scholar 

  • van der Wateren FM (1999) Structural geology and sedimentology of the Heiligenhafen till section, Northern Germany. Quat Sci Rev 18:1625–1639. doi:10.1016/S0277-3791(98)00120-6

    Article  Google Scholar 

  • van der Wateren FM, Kluiving SJ, Bartek LR (2000) Kinematic indicators of subglacial shearing. In: Maltman AJ, Hubbart B, Hambrey MJ (eds) Deformation of glacial material. Geological Society Special Publication 176, London, pp 259–278

  • Vannucchi P, Maltman A, Bettelli G, Clennell B (2003) On the nature of scaly fabric and scaly clay. J Struct Geol 25:673–688. doi:10.1016/S0191-8141(02)00066-4

    Article  Google Scholar 

  • Vaslet D (1990) Upper Ordovician glacial deposits in Saudi Arabia. Episodes 13:147–161

    Google Scholar 

  • Veevers JJ (2004) Gondwanaland from 650–500 Ma assembly through 320 Ma merger in Pangea to 185–100 Ma breakup: supercontinental tectonics via stratigraphy and radiometric dating. Earth Sci Rev 68:1–132. doi:10.1016/j.earscirev.2004.05.002

    Article  Google Scholar 

  • Ventura G (1988) Kinematic significance of mingling-rolling structures in lava flows: a case study from Porri Volcano (Salina, Southern Tyrrhenian Sea). Bull Volcanol 59:394–403. doi:10.1007/s004450050199

    Article  Google Scholar 

  • Zwally HJ, Abdalati W, Herring T, Larson K, Saba J, Steffen K (2002) Surface melt-induced acceleration of greenland ice-sheet flow. Science 297:218–222. doi:10.1126/science.1072708

    Article  Google Scholar 

Download references

Acknowledgments

The manuscript benefited from constructive reviews by Nick Eyles and Jean-François Ghienne, as well as Jan Piotrowski and John Menzies. JFG is also particularly thanked for having shared his experience concerning Late Ordovician glacial deposits during field missions. Part of this work was made possible through research grants provided by the TOTAL “Projets Nouveaux Afrique” and research allocation from the Ministère de l’Education Nationale, de la Recherche et de la Technologie,. The authors thank TOTAL for authorizing the submission of this paper and Hugh Rice for his constructive remarks. We are also very grateful to Zibo Garba and Moussa Yahaya of the University of Niamey. This work is a contribution of the UMR-CNRS 5561 Biogéosciences, Equipe SEDS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Denis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denis, M., Guiraud, M., Konaté, M. et al. Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger). Int J Earth Sci (Geol Rundsch) 99, 1399–1425 (2010). https://doi.org/10.1007/s00531-009-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-009-0455-z

Keywords

Navigation