Skip to main content
Log in

The south-western Black Forest and the Upper Rhine Graben Main Border Fault: thermal history and hydrothermal fluid flow

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The thermal history of the south-westernmost Black Forest (Germany) and the adjacent Upper Rhine Graben were constrained by a combination of apatite and zircon fission-track (FT) and microstructural analyses. After intrusion of Palaeozoic granitic plutons in the Black Forest, the thermal regime of the studied area re-equilibrated during the Late Permian and the Mesozoic, interrupted by enhanced hydrothermal activity during the Jurassic. At the eastern flank of the Upper Rhine Graben along the Main Border Fault the analysed samples show microstructural characteristics related to repeated tectonic and hydrothermal activities. The integration of microstructural observations of the cataclastic fault gouge with the FT data identifies the existence of repeated tectonic-related fluid flow events characterised by different thermal conditions. The older took place during the Variscan and/or Mesozoic time at temperatures lower than 280°C, whereas the younger was probably contemporary with the Cenozoic rifting of the Upper Rhine Graben at temperatures not higher than 150°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berger JP, Reichenbacher B, Becker D, Grimm M, Grimm K, Picot L, Storni A, Pirkenseer C, Derer C, Schäfer A (2005a) Paleogeography of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB) from Eocene to Pliocene. Int J Earth Sci 94:697–710. doi:10.1007/s00531-005-0475-2

    Article  Google Scholar 

  • Berger JP, Reichenbacher B, Becker D, Grimm M, Grimm K, Picot L, Storni A, Pirkenseer C, Schäfer A (2005b) Eocene-Pliocene time scale and stratigraphy of the Upper Rhine Graben (URG) and the Swiss Molasse Basin (SMB). Int J Earth Sci 94:711–731. doi:10.1007/s00531-005-0479-y

    Article  Google Scholar 

  • Boullier AM, Fujimoto K, Ito H, Ohtani T, Keulen N, Fabbri O, Amitrano D, Dubois M, Pezard P (2004) Structural evolution of the Nojima Fault (Awaji Island, Japan) revisited from the GSJ drillhole at Hirabayashi. Earth Planets Space 56:1233–1240

    Google Scholar 

  • Brandon MT, Roden-Tice MK, Garver JI (1998) Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State. Geol Soc Am Bull 110:985–1009. doi:10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2

    Article  Google Scholar 

  • Chantraine J, Autran A Cavelier C et al (1996) Carte géologique de la France à l’échelle du millionième, 6e édn. BRGM, Orléans

  • Dumitru TA (1993) A new computer-automated microscope stage system for fission-track analysis. Nucl Tracks Radiat Meas 21:575–580. doi:10.1016/1359-0189(93)90198-I

    Article  Google Scholar 

  • Dunkl I (2002) Trackkey; a Windows program for calculation and graphical presentation of fission track data. Comput Geosci 28(1):3–12. doi:10.1016/S0098-3004(01)00024-3

    Article  Google Scholar 

  • Duringer P (1988) Les conglomérates des bordures du rift cénozoïque rhénan. Dynamique sédimentaire et contrôle climatique (Unpublished These). L’Université Louis Pasteur, Strasbourg, pp 1–278

  • Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, Central Europe. Tectonics 8(1):1–21. doi:10.1029/TC008i001p00001

    Article  Google Scholar 

  • Echtler HP, Chauvet A (1992) Carboniferous convergence and subsequent crustal extension in the southern Schwarzwald (SW Germany). Geodin Acta 5(1–2):37–49

    Google Scholar 

  • Ernst M, Hergesell G (1997) Geologische Karte von Baden-Würrtemberg 1:25.000, BL. 8211, Kandern, Landesvermessungsamt, Stuttgart

  • Fitz Gerald JD, Stünitz H (1993) Deformation of granitoids at low metamorphic grade I. Reactions and grain size reduction. Tectonophysics 221:3–4

    Google Scholar 

  • Galbraith RF (1988) Graphical display of estimates having differing standard errors. Technometrics 30:271–281. doi:10.2307/1270081

    Article  Google Scholar 

  • Galbraith RF (1990) The radial plot: graphical assessment of spread in ages. Nucl Tracks Radiat Meas 17:207–214. doi:10.1016/1359-0189(90)90036-W

    Article  Google Scholar 

  • Galbraith RF, Laslett GM (1993) Statistical models for mixed fission track ages. Nucl Tracks Radiat Meas 21:459–470. doi:10.1016/1359-0189(93)90185-C

    Article  Google Scholar 

  • Geyer OF, Gwinner MP (1991) Geologie von Baden-Württemberg. Schweizerbart, Stuttgart, p 482

    Google Scholar 

  • Giersch C (2006) Thermohydrodraulik des kristallinen Grundgebirges am Beispiel des östlichen Oberrheingrabens. AGK Schriftenr 72:1–156

    Google Scholar 

  • Gleadow AJW (1981) Fission track dating: what are the real alternatives. Nucl Tracks 5:3–14. doi:10.1016/0191-278X(81)90021-4

    Article  Google Scholar 

  • Gleadow AJW, Duddy IR (1981) A natural long-term track annealing experiment for apatite. Nucl Tracks 5:169–174. doi:10.1016/0191-278X(81)90039-1

    Article  Google Scholar 

  • Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1985) Fission Track annealing in apatite: track lengths measurements and the form of the Arrhenius plot. Nucl Tracks 10:323–328

    Google Scholar 

  • Gürler B, Hauber L, Schwander M (1987) Die Geologie der Umgebung von Basel. Beit zur Geol. Karte Schweiz 160:1–33

    Google Scholar 

  • Haas IO, Hoffmann CR (1929) Temperature gradient in Pechelbronn oil–bearing region, Lower Alsace: its determination and relation to oil reserves. Bull Am Ass Petrol Geol 13:1257–1273

    Google Scholar 

  • Hann HP, Sawatzki G (2000) Neue Daten zur Tektonik des Südschwarzwaldes. Jber Mitt Oberrhein Geol Ver 82:363–376

    Google Scholar 

  • Häring MO (2002) Sondierbohrung Otterbach, Basel. Der erste Schritt zur Entwicklung eines geothermischen Heiz-Kraftwerks nach dem Hot-Dry-Rock Verfahren. Bull angew Geol 7(1):19–30

    Google Scholar 

  • Hill DP, Reasenberg PA, Michael AJ, Arabasz WJ, Beroza GC, Brune JN, Brumbaugh DS, Castro R, Davis SD, dePolo DM, Ellsworth WL, Gomberg JS, Harmsen SC, House L, Jackson SM, Johnston MJ, Jones LM, Keller R, Malone SD, Munguia L, Nava S, Pechmann JC, Sanford AR, Simpson RW, Smith RS, Stark MA, Stickney MC, Vidal A, Walter SR, Wong V, Zollweg JE (1993) Seismicity in the Western United States remotely triggered by the M 7.4 Landers, California, earthquake of June 28, 1992. Open-file Rep (US Geol Surv), pp 238–276

  • Hinsken S, Ustaszewski K, Wetzel A (2007) Graben-width controls synrift sedimentation: the Palaeogene southern Upper Rhine Graben as an example. Int J Earth Sci. doi:10.1007/s00531-006-0162-y

  • Huang F, Jian C, Tang Y, Xu G, Deng Z, Chi G (2004) Response changes of some wells in the mainland subsurface fluid monitoring network of China, due to the September 21, 1999, Ms7. 6 Chi-Chi Earthquake. Tectonophysics 390:217–234. doi:10.1016/j.tecto.2004.03.022

    Article  Google Scholar 

  • Hurford AJ, Green PF (1983) The zeta age calibration of fission-track dating. Chem Geol 41(4):285–317

    Article  Google Scholar 

  • Hurford AJ (1990) International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. Nucl Tracks Radiat Meas 17(3):233–236. doi:10.1016/1359-0189(90)90040-5

    Article  Google Scholar 

  • Illies JH (1967) Development and tectonic pattern of the Rhinegraben. Abh Geologischen Landesamtes Baden-Wurttemberg 6:7–9

    Google Scholar 

  • Jelinek AR, Bastos-Neto AC, Lelarge MLV, Soliani E Jr (1999) Apatite fission-track dating of fluorite ore veins from Santa Catarina state, Brasil: a complex hydrothermal evolution. J S Am Earth Sci 12:367–377. doi:10.1016/S0895-9811(99)00028-0

    Article  Google Scholar 

  • Kasuya M, Naeser CW (1988) The effect of alpha-damage on fission-track annealing in zircon. Nucl Tracks Radiat Meas 14(4):477–480. doi:10.1016/1359-0189(88)90008-8

    Article  Google Scholar 

  • Kato A, Ohnaka M, Mochizuki H (2003) Constitutive properties for the shear failure of intact granite in seismogenic environments. J Geophys Res 108(B1). doi:10.1029/2001JB000791

  • Keulen N, Heilbronner R, Stünitz H, Boullier AM, Ito H (2007) Grain size distribution of gouge; a comparison between experimentally deformed granitoids and the Nojima Fault Zone. J Struct Geol 29(8):1282–1300. doi:10.1016/j.jsg.2007.04.003

    Article  Google Scholar 

  • Keulen N, Stünitz H, Heilbronner R (2008) Healing microstructures of experimental and natural fault gouge. J Geophys Res 113:B06205. doi:10.1029/2007JB005039

  • Lampe C, Person MA (2002) Advective cooling within sedimentary rift basins—application to the Upper Rhinegraben (Germany). Mar Pet Geol 19(3):361–375. doi:10.1016/S0264-8172(02)00022-3

    Article  Google Scholar 

  • Laubscher H (1987) Die tektonische Entwicklung der Nordschweiz. Eclogae Geol Helv 80(2):287–303

    Google Scholar 

  • Lüders V (1994) Geochemische Untersuchungen an Gangmineralen aus dem Bergbaurevier Freiamt-Sexau und dem Badenweiler-Quarzriff (Schwarzwald). Abh Geologischen Landesamtes Baden-Wurttemberg 14:173–190

    Google Scholar 

  • Lin A (1999) S–C cataclasite in granitic rock. Tectonophysics 304:257–273. doi:10.1016/S0040-1951(99)00026-8

    Article  Google Scholar 

  • Metz R, Rein G (1957) Geologisch-petrographische Übersichtskarte des Südschwarzwaldes mit Erz- und Mineralgängen, 1:50000. Moritz Schauenburg Verlag, Lahr/Schwarzwald

    Google Scholar 

  • Milliken KL, Laubach SE (2000) Brittle deformation in sandstone diagenesis as revealed by scanned cathodoluminescence imaging with application to characterization of fractured reservoirs. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 225–243

    Google Scholar 

  • Naeser CW (1976) Fission-track dating. Open-file Rep (US Geol Surv), pp 76–190

  • Parry WT, Bunds MP, Bruhn RL, Hall CM, Murphy JM (2001) Mineralogy, 40Ar/39Ar dating and apatite fission track dating of rocks along the Castle Mountain fault, Alaska. Tectonophysics 337:149–172. doi:10.1016/S0040-1951(01)00117-2

    Article  Google Scholar 

  • Paul W (1955) Zur Morphogenese des Schwarzwaldes (I). Jh Geol Landesamt Baden-Württemberg 1:395–427

    Google Scholar 

  • Person M, Garven G (1992) Hydrologic constraints on petroleum generation within continental rift basins; theory and application to the Rhine Graben. Am Assoc Pet Geol Bull 76(4):468–488

    Google Scholar 

  • Ramseyer K, Fischer J, Matter A, Eberhardt P, Geiss J (1989) A cathodoluminescence microscope for low intensity luminescence. J Sediment Petrol 59:619–622

    Google Scholar 

  • Ramseyer K, AlDahan AA, Collini B, Landström O (1992) Petrological modifications in granite rocks from the Siljan impact structure: evidence from cathodoluminescence. Tectonophysics 216:195–204. doi:10.1016/0040-1951(92)90166-4

    Article  Google Scholar 

  • Rahn MK, Brandon MT, Batt GE, Garver JI (2004) A zero-damage model for fission-track annealing in zircon. Am Mineral 89(4):473–484

    Google Scholar 

  • Rybach L (2007) The geothermal conditions in the Rhine Graben—a summary. Bull für angewandte Geol 12(1):29–32

    Google Scholar 

  • Sammis CG, King G, Biegel RL (1987) The Kinematics of Gouge Deformation. Pure Appl Geophys 125:777–812. doi:10.1007/BF00878033

    Article  Google Scholar 

  • Schaltegger U (2000) U–Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828. doi:10.1007/s005310050308

    Article  Google Scholar 

  • Schellschmidt R, Clauser C (1996) The thermal regime of the Upper Rhine Graben and the anomaly at Soultz. Z Angew Geologie 42(1):40–44

    Google Scholar 

  • Schnarrenberger K (1985) Erläuterungen zu Blatt 8211 Kandern-Geologische Karte 1:25.000 von Baden-Württemberg. Geologisches Landesamt Baden-Würrtemberg, Heidelberg/Stuttgart, pp 1–131

  • Schreiner A, Söll H, Wimmenauer W (1957) Über zwei neugefundene tertiäre Tuffschlote bei Feuerbach (Südbaden). Jh Geol Landesamt Baden-Wurttemberg 2:179–192

    Google Scholar 

  • Schumacher ME (2002) Upper Rhine Graben: the role of pre-existing structures during rift evolution. Tectonics 21(1). doi:10.1029/2001TC900022

  • Shao SM, Zou JC (1996) Fractal research of fault gouge. Acta Seismol Sin 9(3):485–491. doi:10.1007/BF02650984

    Article  Google Scholar 

  • Sibson RH (1990) Faulting and fluid flow. In: Nesbitt BE (ed) Mac short course handbook series Vol 18. Short course on fluids in tectonically active portions of the continental crust. Mineralogical Association of Canada, Vancouver, pp 93–129

    Google Scholar 

  • Sissingh W (1998) Comparative Tertiary stratigraphy of the Rhine Graben, Bresse Graben and Molasse Basin; correlation of Alpine Foreland events. Tectonophysics 300(1–4):249–284. doi:10.1016/S0040-1951(98)00243-1

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002a) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250–700°C. J Struct Geol 24:1861–1884. doi:10.1016/S0191-8141(02)00035-4

    Article  Google Scholar 

  • Stipp M, Stünitz H, Heilbronner R, Schmid SM (2002b) Dynamic recrystallization of quartz: correlation between natural and experimental conditions. In: De Meer S et al (eds) Deformation mechanisms, rheology and tectonics: current status and future perspectives, vol 200. Geol Soc Spec Publ, London, pp 171–190

  • Surma F, Geraud Y, Pourcelot L, Gauthier-Lafaye F, Clavaud JB, Zamora M, Lespinasse M, Cathelineau M (2003) Microstructures d’un gres affecte par une faille normale; anisotropie de connectivite et de permeabilite. Bull Soc Geol Fr 174(3):295–303. doi:10.2113/174.3.295

    Article  Google Scholar 

  • Tagami T, O’Sullivan PB (2005) Fundamentals of fission-track thermochronology. In: Reiners PW, Ehlers TA (eds) Low-temperature thermochronology: techniques, interpretations, and applications. Rev Mineral Geochem 58, pp 19–47. doi:10.2138/rmg.2005.58.2

  • Tagami T (2005) Zircon fission-track thermochronology and applications to fault studies. In: Reiners PW, Ehlers TA (2005) Low-temperature thermochronology: techniques, interpretations, and applications. Rev Mineral Geochem 58, pp 95–122. doi:10.2138/rmg.2005.58.4

  • Teichmüller M (1979) Die Diagenese der kohligen Substanzen in den Gesteinen des Tertiärs und Mesozoikums des mittleren Oberrhein-Grabens. In: Reiche E, Hilden HD (eds) Inkohlung und Geothermik; Beziehungen zwischen Inkohlung, Illit-Diagenese, Kohlenwasserstoff Führung und Geothermik. Fortschritte in der Geologie von Rheinland und Westfalen 27, pp 19–49

  • Timar-Geng Z, Fügenschuh B, Schaltegger U, Wetzel A (2004) The impact of the Jurassic hydrothermal activity on zircon fission track data from the southern Upper Rhine Graben area. Schweiz Mineral Petrogr Mitt 84:257–269

    Google Scholar 

  • Timar-Geng Z, Fügenschuh B, Wetzel A, Dresmann H (2006) Low-temperature thermochronology of the flanks of the southern Upper Rhine Graben. Int J Earth Sci 95(4):685–702. doi:10.1007/s00531-005-0059-1

    Article  Google Scholar 

  • Timar-Geng Z, Henk A, Wetzel A (2008) The impact of convective heat transfer on the interpretation of fission-track data. In: Lisker F, Ventura B, Glasmacher U (eds) Thermochronological methods: from paleotemperature constraints to landscape evolution models. Geological Society, London (Special Publications, in press)

  • Todt W (1976) Zirkon-U/Pb-Alter des Marlsburg-Granites vom Süd-Schwarzwald. N Jb Min H12:532–544

    Google Scholar 

  • Thury M, Gautchi A, Mazurek M, Müller WH, Naef H, Pearson FJ, Vomvoris S, Wilson W (1994) Geology and hydrology of the crystalline basement of northern Switzerland. NAGRA Technischer Bericht 93-01:3-1–3-11

  • Tokunaga T (1999) Modeling of earthquake-induced hydrological changes and possible permeability enhancement due to the 17 January 1995 Kobe Earthquake, Japan. J Hydrol (Amst) 223:221–229. doi:10.1016/S0022-1694(99)00124-9

    Article  Google Scholar 

  • Trepmann CA, Stöckhert B (2003) Quartz microstructures developed during non-steady state plastic flow at rapidly decaying stress and strain rate. J Struct Geol 25(12):2035–2051. doi:10.1016/S0191-8141(03)00073-7

    Article  Google Scholar 

  • Truesdell AH (1984) Chemical geothermometers for geothermal exploration. In: Henley RW, Truesdell AH, Barton PB Jr (eds) Fluid-mineral equilibria in hydrothermal systems. Reviews in economic geology. Society of Economic Geologists, Chelsea, pp 31–43

  • Tullis J, Yund RA (1977) Experimental deformation of dry Westerly Granite. J Geophys Res 82(36):5705–5718. doi:10.1029/JB082i036p05705

    Article  Google Scholar 

  • Ustaszewski K, Schumacher ME, Schmid SM (2005) Simultaneous normal faulting and extensional flexuring during rifting; an example from the southernmost Upper Rhine Graben. Int J Earth Sci 94(4):680–696. doi:10.1007/s00531-004-0454-z

    Article  Google Scholar 

  • Werner D, Doebl F (1974) Eine geothermische Karte des Rheingrabenuntergrundes. In: Illies JH, Fuchs K (eds) Approaches Taphrogenesis, Stuttgart, pp 182–191

  • Werner W, Franzke HJ (2001) Postvariszische bis neogene Bruchtektonik und Mineralisation im südlichen Zentralschwarzwald. Z Dtsch Geol Ges 152:405–437

    Google Scholar 

  • Wetzel A, Allia V (2003) Der Opalinuston in der Nordschweiz: Lithologie und Ablagerungsgeschichte. Eclogae Geol Helv 96(3):451–469

    Google Scholar 

  • Wetzel A, Allenbach R, Allia V (2003) Reactivated basement structures affecting the sedimentary facies in a tectonically “quiescent” epicontinental basin; an example from NW Switzerland. Sed Geol 157(1–2):153–172. doi:10.1016/S0037-0738(02)00230-0

    Article  Google Scholar 

  • Wilser JL (1914) Die Rheintalflexur nördöstlich von Basel zwischen Lörrach und Kandern und ihr Hinterland. Mitt Bad Geol L- Anst 7(2):485–640

    Google Scholar 

  • Wimmenauer W, Schreiner A (1990) Erläuterungen zu Blatt 8114, Feldberg. Geol Karte Baden-Württemberg 1:25 000, Stuttgart, p 134

  • Wirth G (1984) Kleintektonische Untersuchungen im Grund- und Deckgebirge des Südostschwarzwaldes (Baden-Würrtemberg). Arb Inst Geol Paläont Univ Stuttgart, NF 78:85–136

    Google Scholar 

  • Ziegler PA (1994) Cenozoic rift system of western and central Europe: an overview. Geol Mijnb 73:99–127

    Google Scholar 

  • Ziegler PA, Dèzes P (2005) Evolution of the lithosphere in the area of the Rhine rift system. Int J Earth Sci 94(4):594–614. doi:10.1007/s00531-005-0474-3

    Article  Google Scholar 

  • Ziegler PA, Dèzes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Global Planet Change 58(1–4):237–269. doi:10.1016/j.gloplacha.2006.12.004

    Article  Google Scholar 

  • Zienert A (1986) Grundzüge der Grossformenentwicklung Süddeutschlands zwischen Oberrheinebene und Alpenvorland. Selbstverlag, Heidelberg, pp 1–160

    Google Scholar 

Download references

Acknowledgments

This work is a contribution of the EUCOR-URGENT Project (Upper Rhine Graben, Evolution and NeoTectonics). It has been supported by the Swiss National Science Foundation (Project Nos. 21-57038.99 and 20-64567.01 to A. Wetzel). We gratefully thank James R. Mackenzie† for all his help; we will never forget him! A. Kounov, M. Tischler, F. Gaidies, T. Heijboer, E. Wosnitza and S. Kock are thanked for fruitful discussion, W. Tschudin for thin sections. R. Waite, L. Cartier and C. Seiler for sample preparation. K. Ramseyer (Univ. Bern) for the introduction into cathodoluminescence and the usage of his microscope. Central Microscope Centre of the University Basel for the use of their facilities. The authors would like to thank S. Hinsken for introduction into the local geology and K. Ustaszewski for providing structural data of the Kandern Fault Zone. Careful reviews with very useful suggestions of B. Ventura and U. Glasmacher improved an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Dresmann.

Appendix

Appendix

FT analytical details

Apatite and zircon grains were separated from each sample (4–6 kg rock material) using standard crushing, magnetic and heavy liquid techniques. The zircon samples were mounted in Teflon PFA®, while the apatite samples were embedded in epoxy resin. After polishing, the apatites were etched for 40 s in 6.5% HNO3 at ~18°C and the zircons for 6–12 h in a eutectic-melt of KOH–NaOH (220°C). Mica was used as an external detector and CN-5 (apatite) and CN-1 (zircon) standards as dosimeter glasses. Irradiation with thermal neutrons was carried out at the Australian Nuclear Science and Technology Organisation facility (ANSTO).

Mica detectors were etched in 40% HF for 40 min at ~18°C. Tracks were counted at a magnification of 1,600× (dry) on a Zeiss Axioplan2 optical microscope with a computer-controlled motorised scanning stage, run by the program “FT-STAGE 3.11” (Dumitru 1993).

The FT-age determination followed the zeta calibration method (Hurford and Green 1983) with a zeta value of 380.67 ± 10.58 (Durango, CN-5) for apatite and 145 ± 6.88 (Fish Canyon Tuff, CN-1) for zircon. The FT ages and errors were calculated using the software Trackkey (version 4.1) (Dunkl 2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dresmann, H., Keulen, N., Timar-Geng, Z. et al. The south-western Black Forest and the Upper Rhine Graben Main Border Fault: thermal history and hydrothermal fluid flow. Int J Earth Sci (Geol Rundsch) 99, 285–297 (2010). https://doi.org/10.1007/s00531-008-0391-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0391-3

Keywords

Navigation