Skip to main content
Log in

Fracture-related hydrothermal alteration of metagranitic rock and associated changes in mineralogy, geochemistry and degree of oxidation: a case study at Forsmark, central Sweden

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Red-staining of rocks due to fluid–rock interaction during hydrothermal circulation in fractures is a common feature in crystalline sequences. In this study, red-stained metagranitic rock adjacent to fractures in Forsmark, central Sweden, has been studied with emphasis on the mineral reactions and associated element mobility occurring during the alteration. The main mineral reactions associated with the hydrothermal alteration are an almost complete saussuritization of plagioclase accompanied by total chloritization of biotite. Magnetite has been partly replaced by hematite whereas quartz and K-feldspar were relatively unaffected by the hydrothermal alteration. We show that redistribution of elements on the whole rock scale was very limited and is mainly manifested by enrichment of Na2O and volatiles and depletion of CaO, FeO and SiO2 in the red-stained rock. However, on the microscale, element redistribution was more extensive, with both intragranular and intergranular migration of e.g. Ca, K, Na, Al, Si, Fe, Ba, Cs, Rb, Sr, Ti and REEs. The altered rock shows a shift towards higher total oxidation factors, but the change is smaller than 1σ and the red-staining of the rock is due to hematite dissemination rather than a significant oxidation of the rock. An increase in the connected porosity is also observed in the altered rock.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abaa SI (1991) Hydrothermal fluids responsible for the formation of precious minerals in the Nigerian Younger Granite Province. Miner Depos 26:34–39. doi:10.1007/BF00202362

    Article  Google Scholar 

  • Annersten H (1974) Mössbauer studies of natural biotites. Am Mineral 59:143–151

    Google Scholar 

  • Baumgartner LP, Olsen SN (1995) A least-squares approach to mass transport calculations using the isocon method. Econ Geol 90:1261–1270

    Article  Google Scholar 

  • Bird DK, Spieler AR (2004) Epidote in geothermal systems. Rev Mineral Geochem 56:253–300. doi:10.2138/gsrmg.56.1.235

    Article  Google Scholar 

  • Bird DK, Schiffman P, Elders WA, Williams AE, McDowell SD (1984) Calc-silicate mineralization in active geothermal systems. Econ Geol 79:671–695

    Article  Google Scholar 

  • Brownlow AH (1996) Geochemistry, 2nd edn. Prentice-Hall, London

    Google Scholar 

  • Bryndzia LT, Scott SD (1987) The composition of chlorite as a function of sulfur and oxygen fugacity: an experimental study. Am J Sci 287:50–76

    Google Scholar 

  • Clark AM (1984) Mineralogy of the rare earth elements. In: Henderson P (ed) Rare earth element geochemistry. Elsevier Scientific, Oxford, pp 33–61

    Google Scholar 

  • Cole DR, Larson PB, Riciputi LR, Mora CI (2004) Oxygen isotope zoning profiles in hydrothermally altered feldspars; estimating the duration of water–rock interaction. Geology 32:29–32. doi:10.1130/G19881.1

    Article  Google Scholar 

  • Dahlquist JA (2001) REE fractionation by accessory minerals in epidote-bearing metaluminous granitoids from the Sierra Pampeanas, Argentina. Mineral Mag 65:463–475. doi:10.1180/002646101750377506

    Article  Google Scholar 

  • Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions. de Albuquerque CAR (1975) Partition of trace elements in co-existing biotite, muscovite and potassium feldspar of granitic rocks, northern Portugal. Chem Geol 16:89–108. John Wiley & Sons, New York

    Google Scholar 

  • de Albuquerque CAR (1975) Partition of trace elements of co-existing biotite, muscovite and potassium feldspar of granitic rocks, northern Portugal. Chem Geol 16:89–108

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Pearson Education Limited, Harlow

    Google Scholar 

  • Dipple GM, Ferry JM (1992) Metasomatism and fluid flow in ductile fault zones. Contrib Mineral Petrol 112:149–164. doi:10.1007/BF00310451

    Article  Google Scholar 

  • Drake H, Tullborg E-L, Annersten H (2008) Red-staining of the wall rock and its influence on the reducing capacity around water conducting fractures. Appl Geochem 23:1898–1920. doi:10.1016/j.apgeochem.2008.02.017

    Article  Google Scholar 

  • Eliasson T (1993) Mineralogy, geochemistry and petrophysics of red coloured granite adjacent to fractures. SKB Technical Report 93–06. Swedish Nuclear Fuel and Waste Management Co (SKB). http://www.skb.se

  • Ennis DJ, Dunbar NW, Campbell AR, Chapin CE (2000) The effects of K-metasomatism on the mineralogy and geochemistry of silicic ignimbrites near Socorro, New Mexico. Chem Geol 167:285–312. doi:10.1016/S0009-2541(99)00223-5

    Article  Google Scholar 

  • Ericsson T, Wäppling R (1976) Texture effects in 3/2–1/1 Mössbauer spectra. J Phys (Paris) 12:719–723

    Google Scholar 

  • Evansen NM, Hamilton PJ, O’Nions RK (1978) Rare earth abundances in Chondritic meteorites. Geochim Cosmochim Acta 42:1199–1212. doi:10.1016/0016-7037(78)90114-X

    Article  Google Scholar 

  • Ferry JM (1979) Reaction mechanisms, physical conditions, and mass transfer during hydrothermal alteration of mica and feldspar in granitic rocks from South-central Maine, USA. Contrib Mineral Petrol 68:125–139. doi:10.1007/BF00371895

    Article  Google Scholar 

  • Fiebig J, Hoefs J (2002) Hydrothermal alteration of biotite and plagioclase as inferred from intragranular oxygen isotope- and cation-distribution patterns. Eur J Mineral 14:49–60. doi:10.1127/0935-1221/2002/0014-0049

    Article  Google Scholar 

  • Frey M, De Capitani C, Liou JG (1991) A new petrogenetic grid for low-grade metabasites. J Metamorph Geol 9:497–509. doi:10.1111/j.1525-1314.1991.tb00542.x

    Article  Google Scholar 

  • Gascoyne M, Cramer JJ (1987) History of actinide and minor element mobility in the Archean granitic batholith in Manitoba, Canada. Appl Geochem 2:37–53. doi:10.1016/0883-2927(87)90059-X

    Article  Google Scholar 

  • Gorbatschev R, Bogdanova S (1993) Frontiers in the Baltic Shield. Precambrian Res 64:3–21. doi:10.1016/0301-9268(93)90066-B

    Article  Google Scholar 

  • Gorbatschev R, Gaál G (1987) The Precambrian history of the Baltic Shield. In: Kröner A (ed) Proterozoic lithospheric evolution. AGU-GSA Geodynamics Series, pp 149–159

  • Grant JA (1986) The Isocon diagram—a simple solution to Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982

    Article  Google Scholar 

  • Grant JA (2005) Isocon analysis: a brief review of the method and applications. Phys Chem Earth 30:997–1004

    Google Scholar 

  • Grauch RI (1989) Rare earth elements in metamorphic rocks. Rev Mineral 21:147–167

    Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65. doi:10.1016/0009-2541(67)90004-6

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Andersson J, Page L (2007) Penetrative ductile deformation and amphibolite-facies metamorphism prior to 1851 Ma in the western part of the Svecofennian orogen, Fennoscandian Shield. Precambrian Res 153:29–45. doi:10.1016/j.precamres.2006.11.009

    Article  Google Scholar 

  • Hermansson T, Stephens MB, Corfu F, Page L, Andersson J (2008) Migratory tectonic switching, western Svecofennian orogen, central Sweden—constraints from U/Pb zircon and titanite geochronology. Precambrian Res 161:250–278. doi:10.1016/j.precamres.2007.08.008

    Article  Google Scholar 

  • Iida Y, Ohnuki T, Isobe H, Yanase N, Sekine K, Yoshida H et al (1998) Hydrothermal redistribution of rare earth elements in Toki granitic rock, central Japan. J Contam Hydrol 35:191–199. doi:10.1016/S0169-7722(98)00130-2

    Article  Google Scholar 

  • Jenkin GRT, Fallick AE, Leake BE (1992) A stable isotope study of retrograde alteration in SW Connemara, Ireland. Contrib Mineral Petrol 110:269–288. doi:10.1007/BF00310743

    Article  Google Scholar 

  • Jiang W-T, Peacor DR (1994) Formation of corrensite, chlorite and chlorite-mica stacks by replacement of detrital biotite in low-grade pelitic rocks. J Metamorph Geol 12:867–884. doi:10.1111/j.1525-1314.1994.tb00065.x

    Article  Google Scholar 

  • Labotka TC, Cole DR, Fayek M, Riciputi LR, Stadermann FJ (2004) Coupled cation and oxygen-isotope exchange between alkali feldspar and aqueous chloride solution. Am Mineral 89:1822–1825

    Google Scholar 

  • Larsson D, Grönvold K, Oskarsson N, Gunnlaugsson E (2002) Hydrothermal alteration of plagioclase and growth of secondary feldspar in the Hengill Volcanic Centre, SW Iceland. J Volcanol Geotherm Res 114:275–290. doi:10.1016/S0377-0273(01)00267-0

    Article  Google Scholar 

  • Leitch CHB, Lentz DR (1994) The Gresens approach to mass balance constraints of alteration systems: methods, pitfalls, examples. In: Lentz DR (ed) Alteration and alteration processes associated with ore-forming systems. Geological Association of Canada, Short Course Notes 11: 161–192

  • Liou JG, Kim HS, Maruyama S (1983) Prehnite-epidote equilibria and their petrologic applications. J Petrol 24:321–342

    Google Scholar 

  • Liou JG, Maruyama S, Cho M (1985) Phase equilibria and mineral paragenesis of metabasites in low-grade metamorphism. Mineral Mag 49:321–333. doi:10.1180/minmag.1985.049.352.03

    Article  Google Scholar 

  • Nakano S, Akai J, Shimobayashi N (2005) Contrasting Fe–Ca distributions and related microtextures in syenite alkali feldspar from the Patagonian Andes, Chile. Mineral Mag 69:521–535. doi:10.1180/0026461056940268

    Article  Google Scholar 

  • Niedermeier DRD, Putnis A, Geisler T, Golla-Schindler U, Putnis CV (2008) The mechanism of cation and oxygen isotope exchange in alkali feldspars under hydrothermal conditions. Contrib Mineral Petrol. doi: 10.1007/s00410-008-0320-2

  • Nironen M (1997) The Svecofennian Orogen; a tectonic model. Precambrian Res 86:21–44. doi:10.1016/S0301-9268(97)00039-9

    Article  Google Scholar 

  • Norton D, Knapp R (1977) Transport phenomena in hydrothermal systems: the nature of porosity. Am J Sci 277:913–936

    Google Scholar 

  • Olsen SN, Grant JA (1991) Isocon analysis of migmatization in the Front Range, Colorado, USA. J Metamorph Geol 9:151–164. doi:10.1111/j.1525-1314.1991.tb00511.x

    Article  Google Scholar 

  • O’Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • Parneix JC, Petit JC (1991) Hydrothermal alteration of an old geothermal system in the Auriat Granite (Massif Central, France); petrological study and modelling. Chem Geol 89:329–351. doi:10.1016/0009-2541(91)90023-K

    Article  Google Scholar 

  • Parneix JC, Beaufort D, Dudoignon P, Meunier A (1985) Biotite chloritization process in hydrothermally altered granites. Chem Geol 51:89–101. doi:10.1016/0009-2541(85)90089-0

    Article  Google Scholar 

  • Parry WT, Downey LM (1982) Geochemistry of hydrothermal chlorite replacing igneous biotite. Clays Clay Miner 30:81–90. doi:10.1346/CCMN.1982.0300201

    Article  Google Scholar 

  • Petersson J, Berglund J, Danielsson P, Wängnerud A, Tullborg E-L, Mattsson H, et al (2004) Forsmark site investigation. Petrography, geochemistry, petrophysics and fracture mineralogy of boreholes KFM01A, KFM02A and KFM03A+B. SKB P-report P-04-103. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Petersson J, Berglund J, Wängerud A, Stråhle A (2005) Forsmark site investigation. Petrographic and geochemical characteristics of bedrock samples from boreholes KFM04A-06A, and a whitened alteration rock. SKB P-report P-05-156. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Putnis A (2002) Mineral replacement reactions; from macroscopic observations to microscopic mechanisms. Mineral Mag 66:689–708. doi:10.1180/0026461026650056

    Article  Google Scholar 

  • Putnis A, Hinrichs R, Putnis CV, Golla-Schindler U, Gollins LG (2007) Hematite in porous red-clouded feldspars: Evidence of large-scale crustal fluid-rock interaction. Lithos 95:10–18. doi:10.1016/j.lithos.2006.07.004

    Article  Google Scholar 

  • Sandström B, Tullborg E-L (2006) Forsmark site investigation. Fracture mineralogy. Results from KFM06B, KFM06C, KFM07A, KFM08A and KFM08B. SKB P-report P-06-226. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Sandström B, Tullborg E-L (2007) Paleohydrogeological events in Forsmark, central Sweden, recorded by stable isotopes in calcite and pyrite. In: Bullen TD, Wang Y (eds) Water-rock interaction: Proceedings of the 12th International Symposium on Water-Rock Interaction WRI-12. Taylor & Francis, London, pp 773–776

    Google Scholar 

  • Sandström B, Tullborg E-L, de Torres T, Ortiz JE (2006a) The occurrence and potential origin of asphaltite in bedrock fractures, Forsmark, central Sweden. GFF 128:233–242

    Article  Google Scholar 

  • Sandström B, Page L, Tullborg E-L (2006b) Forsmark site investigation. 40Ar/39Ar (adularia) and Rb-Sr (adularia, prehnite, calcite) ages of fracture minerals. Report SKB P-06-213. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Shikazono N, Kawahata H (1987) Compositional differences in chlorite from hydrothermally altered rocks and hydrothermal ore deposits. Can Mineral 25:465–474

    Google Scholar 

  • SKB (2005) Preliminary site description. Forsmark area - version 1.2. SKB R-report R-05-18. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Skogby H, Annersten H (1985) Temperature dependent Mg–Fe-cation distribution in actinolite-tremolite. Neues JB Min Monat 7:193–203

    Google Scholar 

  • Söderlund P, Hermansson T, Page LM, Stephens MB (2008) Low-temperature 40Ar/39Ar geochronological constraints on the post-Svecofennian tectonothermal evolution, western part of the Fennoscandian Shield, central Sweden. Int J Earth Sci. doi:10.1007/s00531-008-0346-8

  • Stephens MB, Lundqvist S, Bergman T, Ekström M (2005) Forsmark site investigation. Bedrock mapping. Petrographic and geochemical characteristics of rock types based on Stage 1 (2002) and Stage 2 (2003) surface data. SKB P-report P-04-87. Swedish Nuclear Fuel and Waste Management Co. (SKB). http://www.skb.se

  • Sugawara T (2000) Thermodynamic analysis of Fe and Mg partitioning between plagioclase and silicate liquid. Contrib Mineral Petrol 138:101–113. doi:10.1007/s004100050011

    Article  Google Scholar 

  • Sun C-O, Williams RJ, Sun S-S (1974) Distribution coefficients of Eu and Sr for plagioclase-liquid and clinopyroxene-liquid equilibria in oceanic ridge basalt: an experimental study. Geochim Cosmochim Acta 38:1415–1433. doi:10.1016/0016-7037(74)90096-9

    Article  Google Scholar 

  • Tullborg E-L, Larson SÅ (2006) Porosity in crystalline rocks—a matter of scale. Eng Geol 84:75–83. doi:10.1016/j.enggeo.2005.12.001

    Article  Google Scholar 

  • Waber NH, Smellie JAT (2008) Characterisation of pore water in crystalline rocks. Appl Geochem 23:1834–1861. doi:10.1016/j.apgeochem.2008.02.007

    Article  Google Scholar 

  • Walker FDL, Lee MR, Parsons I (1995) Micropores and micropermeable texture in alkali feldspars; geochemical and geophysical implications. Mineral Mag 59:505–534. doi:10.1180/minmag.1995.059.396.12

    Article  Google Scholar 

  • Vernon RH (2004) A practical guide to rock microstructure. Cambridge University Press, Cambridge

    Google Scholar 

  • Zazzi Å, Hirch TK, Leonova E, Kaikkonen A, Grins J, Annersten H et al (2006) Structural investigation of natural and syntethic chlorite minerals by X-ray diffraction, Mössbauer spectroscopy and solid state nuclear magnetic resonance. Clays Clay Miner 54:252–265. doi:10.1346/CCMN.2006.0540210

    Article  Google Scholar 

Download references

Acknowledgments

The project was financially supported by the Swedish Nuclear Fuel and Waste Management Company (SKB). We would like to thank Assen Simeonov (SKB) and Michael Stephens (SGU) for discussions and support. Jesper Petersson (Vattenfall Power Consultants) and Kenneth Åkerström (KÅ Geoskog) are thanked for their assistance during the drill core sampling. Allan Stråhle (Geosigma AB) and the staff at Sicada are thanked for assistance with the Sicada data and Ulf Brising (Sweco Position) for the geological map of the area. Discussions with Henrik Drake (University of Gothenburg) regarding the rock alteration in the Simpevarp/Laxemar area have also improved the manuscript. Valuable comments by Sven Åke Larson (University of Gothenburg) and two anonymous journal reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Björn Sandström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandström, B., Annersten, H. & Tullborg, EL. Fracture-related hydrothermal alteration of metagranitic rock and associated changes in mineralogy, geochemistry and degree of oxidation: a case study at Forsmark, central Sweden. Int J Earth Sci (Geol Rundsch) 99, 1–25 (2010). https://doi.org/10.1007/s00531-008-0369-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0369-1

Keywords

Navigation