Skip to main content
Log in

Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

Neoproterozoic evaporites occurring in the western part of the Lesser Himalaya in India, coeval to Pakistan, Iran and Oman evaporites, were investigated in order to understand the degree of metamorphism in them and in associated carbonates. The evaporite-bearing succession occurs in association of phyllite, quartzite and carbonate near the Main boundary Thrust. In order to learn the details about the burial history of these evaporite rocks, the Kübler illite crystallinity index (KI) was measured from the illite peaks of the clay minerals separated from the evaporite rocks and it indicated that this section has reached a maximum temperature up to ~300°C. Microthermometric measurements on fluid inclusions present in the associated dolomite show range of homogenization temperatures (Th), from 220 to 280°C, well within the temperature range of anchizone metamorphism. Additionally, dolomite shows a highly negative δ18O signature (mean, −15.5‰PDB), which is more likely related to diagenetic overprint from deep burial conditions rather than original precipitation from 18O-depleted seawater. The evaporites (sulfates and chloride) probably were transformed many times after their precipitation, but they have retained only the features developed during last one or two phases of alteration and deformation as they are continuously susceptible to minor changes in temperatures and stresses. The final temperature range of 42–78°C in sulfates and chloride gives thermal approximation estimate that is not in concordance with the thermal history of the basin and are likely related to conversion of anhydrite into gypsum and recrystallization of halite during exhumation. Highly negative oxygen isotopic composition, homogenization temperatures and KI values equivalent to a high anchizone metamorphism suggest a burial depth of ~10 km for these terminal Neoproterozoic evaporite-bearing sequences of the Lesser Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aref M (1998) Holocene stromatolites and microbial laminitis associated with lenticular gypsum in a marine dominated environment, Ras el Shetan area, Gulf of Aqaba, Egypt. Sedimentology 45:245–262. doi:10.1046/j.1365-3091.1998.00136.x

    Article  Google Scholar 

  • Attia OE, Lowenstein TK, Wali AMA (1995) Middle Miocene Gypsum, Gulf of Suez: marine or nonmarine? J Sediment Petrol A65:614–626

    Google Scholar 

  • Bein A, Hovorka SD, Fisher RS, Roedder E (1991) Fluid inclusions in bedded Permian halite, Palo Duro Basin, Texas: evidence for modification of seawater in evaporite brine-pools and subsequent early diagenesis. J Sediment Petrol 61:1–14

    Google Scholar 

  • Butler RWG (1995) When did India hit Asia? Nature 373:20–21. doi:10.1038/373020a0

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, Berlin, p 623

    Google Scholar 

  • Davison I, Alsop GI, Blundell DJ (1996) Salt tectonics: some aspects of deformation mechanics. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics, vol 100. Geological Society of London Special Publication, London, pp 1–10

    Google Scholar 

  • Dobson PS, Wilman H (1961) The compression textures of the polycrystalline materials of the rock salt type. Acta Crystallogr 14:1275–1277. doi:10.1107/S0365110X61003697

    Article  Google Scholar 

  • Frey M (1987) Very low-grade metamorphism of clastic sedimentary rocks. In: Frey M (ed) Low temperature metamorphism. Blackie, London, pp 9–58

    Google Scholar 

  • Frey M, Teichmuller R, Mullis J, Kunzi B, Breitschmid A, Gruner U, Schwizer B (1980) Very low-grade metamorphism in external parts of the Central Alps: illite crystallinity, coal rank and fluid inclusion data. Ecol Geol Helv 73:173–203

    Google Scholar 

  • Han G, Preat A, Chamley H, Deconinck JF, Mansy JL (2000) Paleozoic clay mineral sedimentation and diagenesis in the Dinant and Avesnes Basins (Belgium, France): relationships with Variscan tectonism. Sediment Geol 136:217–238. doi:10.1016/S0037-0738(00)00103-2

    Article  Google Scholar 

  • Hodges KV (2000) Tectonics of the Himalaya and southern Tibet from two perspectives. Geol Soc Am Bull 112:324–350. doi:10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of atmosphere and oceans. Princeton University Press, Princeton, NJ, p 582

    Google Scholar 

  • Holser WT (1979) Mineralogy of evaporites. In: Burns RG (ed) Marine minerals. Mineralogical Society of America, Short Course Notes 6, pp 211–235

  • Jordon P, Nuesch R (1989) Deformation structures in the Muschelkalk anhydrites of the Schafishein Well (Jura Overthrust, northern Switzerland). Ecol Geol Helv 82:429–454

    Google Scholar 

  • Kamb WB (1959) Theory of preferred crystal orientation developed by crystallization under stress. J Geol 67:153–170

    Article  Google Scholar 

  • Kisch HJ (1983) Mineralogy and petrology of burial diagenesis (burial metamorphism) and incipient metamorphism in clastic rocks. In: Larsen G, Chillingar GV (eds) Diagenesis in sediments and sedimentary rocks. Elsevier, Amsterdam, pp 289–493

    Google Scholar 

  • Kisch HJ (1987) Correlation between indicators of very low-grade metamorphism. In: Frey M (ed) Low temperature metamorphism. Blackie, London, pp 227–299

    Google Scholar 

  • Knapp ST, Friedman M, Logan JM (1987) Slip and recrystallization of halite gouge in experimental shear zone. Tectonophysics 135:171–183. doi:10.1016/0040-1951(87)90159-4

    Article  Google Scholar 

  • Kochhar N (2007) Was Yangtze Craton, South China attached to the Trans- Aravalli block of the NW India shield during Late Proterozoic. Curr Sci 92:295–297

    Google Scholar 

  • Kübler B (1967) La cristallinite de I’ illite et les zones tout a fait superieures du metamorphisme. In: Etages tectoniques, Colloque de Neuchâtel, A La Bacconniere, Neuchatel, Swiss, pp 105–121

  • Kübler B (1990) Cristallinite de I’ illite et mixed-layers: breve revision. Schweiz Mineral Petrogr 70:89–93

    Google Scholar 

  • Larsen JG (1985) New methods in textural and fabric analyses of rock salt related to mechanical test data. Tostrup Salt Dome, Denmark. In: Schreiber BC, Harner HL (eds) Sixth International Symposium on Salt, The Salt Institute, Alexendria, VA, vol 1, pp 323–330

  • Lee JI, Lee YI (2001) Kubler illite crystallinity index of the Cretaceous Gyeongsang basin, Korea: implication for basin evolution. Clays Clay Miner 49:36–43. doi:10.1346/CCMN.2001.0490103

    Article  Google Scholar 

  • LeFort P (1975) Himalayas; the colloid range. Present knowledge of the continental arc. Am J Sci 275-A:1–44

    Google Scholar 

  • Lowenstein TK, Spencer RJ (1990) Syndepositional origin of potash evaporites; petrographic and fluid inclusion evidences. Am J Sci 290:1–42

    Google Scholar 

  • Lugli S (2001) Timing of post-depositional events in the Burano Formation of the Secchia valley (Upper Triassic, Northern Apennines), clues from gypsum–anhydrite transitions and carbonate metasomatism. Sediment Geol 140:107–122. doi:10.1016/S0037-0738(00)00174-3

    Article  Google Scholar 

  • Macfarlane A, Hodges KV, Lux D (1992) A structural analysis of the Main central thrust zone. Langtang National Park, central Nepal. Himalaya. Geol Soc Am Bull 104:1389–1402. doi:10.1130/0016-7606(1992)104<1389:ASAOTM>2.3.CO;2

    Article  Google Scholar 

  • McCrea JM (1950) Isotopic chemistry of carbonates and a paleotemperature scale. J Chem Phys 18:849–857. doi:10.1063/1.1747785

    Article  Google Scholar 

  • Merriman RJ, Peacor DR (1999) Very low grade metapelites: mineralogy, microfabrics and measuring reaction progress. In: Robinson D, Frey M (eds) Low Grade Metamorphism. Blackwell Science, London, pp 10–60

    Google Scholar 

  • Mukherjee MK (2003) Very Low-grade Metamorphism vis-à-vis penetrative deformation in the Southern Nallamalai fold-fault Belt, Cuddapah Basin, Andhra Pradesh. J Geol Soc India 62:535–548

    Google Scholar 

  • Müller WH, Briegal U (1977) Experimentelle Untersuchungen an Anhydrit aus der Schweiz. Ecol Geol Helv 70:685–699

    Google Scholar 

  • Müller WH, Briegal U (1978) The rheological behaviour of polycrystalline anhydrite. Ecol Geol Helv 71:390–407

    Google Scholar 

  • Müller WH, Briegal U (1980) Mechanical aspects of the Jura overthrust. Ecol Geol Helv 73:239–250

    Google Scholar 

  • Nuesch R, Baumann WW (1989) Ton und Sulphatgesteine in Wechselwirkung bei Deformation. Geol Rundsch 78:443–457. doi:10.1007/BF01776184

    Article  Google Scholar 

  • Pierre C (1994) Stable isotope tracers of conditions of evaporites sedimentation and diagenesis. In: Technical Committee, GRECO (CNRS) (eds) Evaporite sequences in petroleum exploration, vol 52, pp 145–160

  • Raiverman V (1997) Subsurface stratigraphy of Ganga Basin and new leads for hydrocarbon exploration. ONGC Bull 34:43–65

    Google Scholar 

  • Richter-Bernburg G (1980) Aberrant vertical structures in well bedded halite deposits. In: Coogan AH, Hauber L (eds) Fifth international symposium on salt, northern Ohio Geological Society, Cleveland, pp 159–166

  • Roedder E (1984) Fluids inclusions. Rev Mineral 12:644

    Google Scholar 

  • Schreiber BC, Helman ML (2005) Deformation of evaporites and the formation of pseudo-sedimentary features: confusion and misidentification. J Sediment Res 75:525–533. doi:10.2110/jsr.2005.043

    Article  Google Scholar 

  • Singh BP, Bhatia R (1995) Facies and environments of deposition of the gypsum deposits of Jammu and Kashmir, India. J Indian Assoc Sedimentol 14:89–96

    Google Scholar 

  • Smith DB (1996) Deformation in the Late Permian Boulby Halite in Teesside, NE England. In: Alsop GI, Blundell DJ, Davison I (eds) Salt tectonics, vol 100. Geological Society of London Special Publication, London, pp 77–88

    Google Scholar 

  • Spötl C, Longstaffe FJ, Ramseyer K, Kunks MJ, Wiesheu R (1998) Fluid–rock reactions in an evaporitic mélange, Permian Haselgebirge, Austrian Alps. Sedimentology 45:1019–1044. doi:10.1046/j.1365-3091.1998.00188.x

    Article  Google Scholar 

  • Stabuli A (1989) Polyphase metamorphism and the development of the main central Thrust. J Metamorph Geol 7:73–94. doi:10.1111/j.1525-1314.1989.tb00576.x

    Article  Google Scholar 

  • Thakur VC, Rawat BS, Islam R (1990) Zanskar crystalline—some observation on its lithostratigraphy, deformation, metamorphism and regional framework. J Himal Geol 1:11–25

    Google Scholar 

  • Tucker ME (1986) Formerly aragonitic limestones associated with tillites in the Late Proterozoic Kingston Peak Formation of Death Valley, California. J Sediment Petrol 56:818–830

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, London, 482 p

  • Urai JL (1987) Development of microstructure during deformation of carnallite and bischofite in transmitted light. Tectonophysics 135:251–263. doi:10.1016/0040-1951(87)90166-1

    Article  Google Scholar 

  • Valdiya KS (1980) The two interacrustal boundary thrusts of the Himalaya. Tectonophysics 66:323–348. doi:10.1016/0040-1951(80)90248-6

    Article  Google Scholar 

  • Valdiya KS (1981) The tectonics of the central sector of the Himalayan arc. In: Gupta HK, Delany FM (eds) Zagros, Hindukush, Himalaya, Geodynamic Evolution.. American Geophysical Union, Washington D.C, pp 87–110

    Google Scholar 

  • Valdiya KS (1995) Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambrian Res 76:35–55. doi:10.1016/0301-9268(95)00004-O

    Article  Google Scholar 

  • Virdi NS (1980) Occurrence of paired metamorphic belts in the Himalaya. J Geol Soc India 22:547–554

    Google Scholar 

  • Virdi NS (1999) Co-existing Late Proteozoic glaciogene sediments and evaporates in the Lesser Himalaya and western Indian shield- expression of contemporaniety of low latitude glaciation and tropical dessication. In: Paliwal BS (ed) The Indian Precambrian. Scientific Publishers, Jodhpur, pp 502–511

    Google Scholar 

  • Woronick RE, Land LS (1985) Late burial diagenesis, Lower Cretaceous Pearsall and Lower Glan Rose formations, South Texas. In: Schneidermann N, Harris PM (eds) Carbonate cements, vol 36. Special Publication Society of Economic Paleontologists and Mineralogists, Tulsa, pp 265–275

    Google Scholar 

  • Yang C, Hesse R (1991) Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachian. Clays Clay Miner 26:211–231

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. H. K. Sachan and Dr. P. K. Srivastava for their help in fluid inclusion petrography and Prof. Yong Il Lee for stable isotope analysis. We are also thankful to Prof. B. C. Schreiber, who provided wealth of literature on secondary evaporites and reviewed an earlier version of this manuscript. The authors are thankful to Dr. S. Roy, an anonymous reviewer and Prof. V. Cermak, the editor of the journal for their suggestions that improved the paper manifold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S.P., Singh, B.P. Geothermal evolution of the evaporite-bearing sequences of the Lesser Himalaya, India. Int J Earth Sci (Geol Rundsch) 99, 101–108 (2010). https://doi.org/10.1007/s00531-008-0361-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-008-0361-9

Keywords

Navigation