Skip to main content

Advertisement

Log in

Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review

  • Review Article
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

“This difference [between shale and limestone] does not find definite expression in the chemical composition but appeals to the eye.” Gilbert (1895)

Abstract

Limestone–marl alternations and other micritic calcareous rhythmites have long appealed to sedimentologists, as they appeared to directly reflect high-frequency environmental change. In particular, when orbital forcing gained popularity amongst sedimentologists and paleoclimatologists in 1980s, such rhythmites seemed to offer an ideal tool for high-resolution chronostratigraphy and environmental reconstruction. However, in spite of the fact that orbital forcing has become a routine interpretation of calcareous rhythmites, and that the processes of formation of calcareous rhythmites are considered well understood, research in the past 10 years again has questioned their primary origin and their direct interpretability. Detailed petrographic, paleontological, and geochemical data from numerous successions through geological time provided the basis for testing whether or not the regular alternation of limestone beds and marl or shale interlayers represents bimodally fluctuating environmental conditions in a direct way. In particular, these data, supplemented by box model simulations, imply that post-depositional alteration (diagenesis) has the potential to not only seriously distort primary environmental signals, but also to mimic primary signals. This questions the use of micritic calcareous rhythmites for high-resolution chronostratigraphy and for environmental interpretations where independent data of diagenetically inert parameters are not available. Diagenetic changes appear to have a yet widely underestimated influence on the appearance of limestone–marl alternations and other calcareous rhythmites. The aim of the present review is to summarize new approaches and give an overview of our research results in this field of the past decade. This review also aims at pointing to still enigmatic aspects that need to be addressed before the interpretation of micritic calcareous rhythmites can be considered a reliable tool for high-resolution chronostratigraphy and paleoenvironmental interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anselmetti FS, Eberli GP (2001) Sonic velocity in carbonates—a combined product of depositional lithology and diagenetic alterations. In: Ginsburg RNG (eds) Subsurface geology of a prograding carbonate platform margin, great bahama bank, vol 70. SEPM Special Publication, CA, pp 202–225

  • Arthur MA, Dean WE, Bottjer DJ, Scholle PA (1984) Rhythmic bedding in Mesozoic-Cenozoic pelagic carbonate sequences: the primary and diagenetic origin of Milankovitch-like cycles. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate. Riedel, Hingham, MA, pp 191–222

    Google Scholar 

  • Barron EJ, Arthur MA, Kauffman EG (1985) Cretaceous rhythmic bedding sequences; a plausible link between orbital variations and climate. Earth Planet Sci Lett 72:327–340

    Article  Google Scholar 

  • Bathurst RGC (1970) Problems of lithification in carbonate muds. Geol Assoc Proc 81:429–440

    Google Scholar 

  • Bathurst RGC (1971) Carbonates and their diagenesis. Developments in sedimentology, vol 12. Elsevier, Amsterdam, pp 1–620

  • Bathurst RGC (1976) Carbonate sediments and their diagenesis. Elsevier, New York, pp 1–658

    Google Scholar 

  • Bausch WM (1997) Die Flexibilität der Kalk/”Mergel-Grenze” und ihre Berechenbarkeit. Z Dtsch Geol Ges 148:247–258

    Google Scholar 

  • Bellanca A, Claps M, Erba E, Masetti D, Neri R, Premoli Silva I, Venezia F (1996) Orbitally induced limestone/marlstone rhythms in the Albian–Cenomanian Cismon section (Venetian region, northern Italy); sedimentology, calcareous and siliceous plankton distribution, elemental and isotope geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol 126:227–260

    Article  Google Scholar 

  • Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) (1984) Milankovitch and climate. Reidel, Hingham, MA, pp 1–895

  • Berger WH (1979) Preservation of foraminifera. SEPM Short Course 6:105–155

  • Betzler C, Reijmer JJG, Bernet K, Eberli GP, Anselmetti FS (1999) Sedimentology patterns and geometries of the Bahamian outer carbonate ramp (Miocene-Lower Pliocene, Great Bahama Bank). Sedimentology 46:1127–1143

    Article  Google Scholar 

  • Biernacka J, Borysiuk K, Raczynski P (2005) Zechstein (Ca1) limestone–marl alternations from the North-Sudetic Basin, Poland: depositional or diagenetic rhythms? Geol Q 49:1–14

    Google Scholar 

  • Blytt A (1889) The probable cause of the displacement of beach-lines. An attempt to compute geological epochs. Christiana Videnskabernes Selskabs Forhandlinger 1889(1):1–92

    Google Scholar 

  • Böhm F, Westphal H, Bornholdt S (2003) Required but disguised: environmental signals in limestone–marl alternations. Palaeogeogr Palaeoclimatol Palaeoecol 189:161–178

    Article  Google Scholar 

  • Bottjer DJ, Arthur MA, Dean WE, Hattin DE, Sarda CE (1986) Rhythmic bedding produced in Cretaceous pelagic carbonate environments: sensitive recorder of climatic cycles. Paleoceanography 1:467–481

    Article  Google Scholar 

  • Cherns L, Wright VP (2000) Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology 28:791–794

    Article  Google Scholar 

  • Cleaveland LC, Jensen J, Goese S, Bice DM, Montanari A (2002) Cyclostratigraphic analysis of pelagic carbonates at Monte dei Corvi (Ancona, Italy) and astronomical correlation of the Serravallian–Tortonian boundary. Geology 30:931–934

    Article  Google Scholar 

  • Cotillon P (1991) Varves, beds, and bundles in pelagic sequences and their correlation (Mesozoic of SE France and Atlantic). In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 820–839

    Google Scholar 

  • Cotillon P, Rio M (1984) Cyclicite comparee du Cretace inferieur pelagique dans les chaines subalpines meridionales (France S.E.), l’Atlantique central (Site 534 D.S.D.P.) et le Golfe du Mexique (Sites 535 et 540 D.S.D.P.); implications paleoclimatiques et application aux correlations stratigraphiques transtethysiennes. In: Leclaire L (ed) Les archives de l’ocean, 26/1, Societé Géologique de France, pp 47–62

  • Courtinat B (1993) The significance of palynofacies fluctuations in the Greenhorn formation (Cenomanian–Turonian) of the Western interior Basin, USA. Mar Micropaleontol 21:249–257

    Article  Google Scholar 

  • Damholt T, Surlyk F (2004) Laminated–bioturbated cycles in the Maastrichtian chalk of the North sea: oxygenation fluctuations within the Milankovitch frequency band. Sedimentology 51:1323–1342

    Article  Google Scholar 

  • de Boer PL, Smith DG (eds) (1994) Orbital forcing and cyclic sequences, vol 19. IAS Special Publication, Blackwell, Oxford, pp 1–576

  • Eberli GP (2000) The record of Neogene sea-level changes in the prograding carbonates along the Bahamas Transect-Leg 166 synthesis. Proc Ocean Drilling Program Sci Results 166:167–177

    Google Scholar 

  • Eder W (1982) Diagenetic redistribution of carbonate, a process in forming limestone–marl alternations (Devonian and Carboniferous, Rheinisches Schiefergebirge, W. Germany). In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin Heidelberg New York, pp 98–112

    Google Scholar 

  • Einsele G, Ricken W (1991) Limestone–marl alternations–an overview. In: Einsele G, Ricken W, Seilacher A (eds) Cycles and events in stratigraphy. Springer, Berlin Heidelberg New York, pp 23–47

    Google Scholar 

  • Elkibbi M, Rial JA (2001) An outsider’s review of the astronomical theory of the climate: is the eccentricity-driven insolation the main driver of the ice ages? Earth Sci Rev 56:161–177

    Article  Google Scholar 

  • Elrick M, Hinnov LA (1996) Millennial-scale climate origins for stratification in Cambrian and Devonian deep-water rhythmites, Western USA. Palaeogeogr Palaeoclimatol Palaeoecol 123:353–372

    Article  Google Scholar 

  • Elrick M, Read JF, Coruh C (1991) Short-term paleoclimatic fluctuations expressed in lower Mississippian ramp-slope deposits, southwestern Montana. Geology 19:799–802

    Article  Google Scholar 

  • Enos P, Sawatsky LH (1981) Pore networks in Holocene carbonate sediments. J Sediment Petrol 51:961–985

    Google Scholar 

  • Erba E, Castradori D, Guasti G, Ripepe M (1992) Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Formation (southern England). Palaeogeogr Palaeoclimatol Palaeoecol 93:47–69

    Article  Google Scholar 

  • Fischer AG (1986) Climatic rhythms recorded in strata. Ann Rev Earth Planet Sci 14:351–376

    Article  Google Scholar 

  • Flügel E (2004) Microfacies of carbonate rocks. Springer, Berlin Heidelberg New York, pp 1–976

    Google Scholar 

  • Flügel E, Fenninger A (1966) Die Lithogenese der Oberalmer Schichten und der mikritischen Plassen-Kalke (Tithonium, Nordliche Kalkalpen). Neues Jahrbuch Geologie Paläontologie Abhandlungen 123:249–280

    Google Scholar 

  • Frank TD, Arthur MA, Dean WE (1999) Diagenesis of lower cretaceous pelagic carbonates, North Atlantic: paleoceanographic signals obscured. J Foraminiferal Res 29:340–351

    Google Scholar 

  • Gilbert GK (1895) Sedimentary measurement of geologic time. J Geol 3:121–127

    Article  Google Scholar 

  • Goldhammer RK (1997) Compaction and decompaction algorithms for sedimentary carbonates. J Sediment Res 67:26–35

    Google Scholar 

  • Gründel J, Rösler HJ (1963) Zur Entstehung der oberdevonischen Kalkknollengesteine Thüringens. Geologie 12:1009–1038

    Google Scholar 

  • Hallam A (1964) Origin of limestone-shale rhythm in the Blue Lias of England: a composite theory. J Geol 72:157–169

    Google Scholar 

  • Hallam A (1986) Origin of minor limestone-shale cycles: climatically induced or diagenetic? Geology 14:609–612

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. Science 194:1121–1132

    Article  Google Scholar 

  • Hilgen FJ, Krijgsman W, Raffi I, Turco E, Zachariasse WJ (2000) Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy). Mar Micropaleontol 38:181–211

    Article  Google Scholar 

  • Holmes MA, Watkins DK, Norris RD (2004) Paleocene cyclic sedimentation in the western North Atlantic, ODP Site 1051, Blake Nose. Mar Geol 209:31–43

    Article  Google Scholar 

  • Illies H (1949) Über die erdgeschichtliche Bedeutung von Konkretionen. Zeitschrift der Deutschen Geologischen Gesellschaft 101:95–98

    Google Scholar 

  • Imbrie, J, Hays J, Martinson DG, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL, Shackleton NJ (1984) The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays J, Kukla G, Saltzman B (eds) Milankovitch and climate. D. Reidel Publishing, Dordrecht, pp 269–305

    Google Scholar 

  • Kennedy WJ, Klinger WJ (1972) Hiatus concretions and hardground horizons in the Cretaceous of Zululand (South Africa). Palaeontology 15:539–549

    Google Scholar 

  • Kent PE (1936) The formation of the hydraulic limestones of the Lower Lias. Geol Mag 73:476–478

    Article  Google Scholar 

  • Kenter JAM, Anselmetti FS, Kramer P, Westphal H, Vandamme MGM (2002) Acoustic properties of “young” carbonate rocks, ODP Leg 166 and holes Clino and Unda, Western Great Bahama Bank. J Sediment Res 72:129–137

    Google Scholar 

  • Kenter JAM, Ginsburg RNG, Troelstra SR (2001) The Western Great Bahama Bank: Sea-level driven sedimentation patterns on the slope and margin. In: Ginsburg RNG (eds) Ground truthing seismic stratigraphy of a prograding carbonate platform margin, neogene, Great Bahama Bank—integrated analysis of sedimentology, stratigraphy, diagenesis and petrophysics, vol 70. SEPM Special Publication, CA, pp 61–100

  • Kroon D, Williams T, Pirmez C, Spezzaferri S, Sato T, Wright JD (2000) Coupled early Pliocene-Middle Miocene bio-cyclostratigraphy of site 1006 reveals orbitally induced cyclicity patterns of Great Bahama Bank carbonate production. In: Swart PK, Eberli EP, Malone MJ, Sarg JF (eds) Proceedings of the ocean drilling program. Sci Results 166:155–166

  • Kuhn G, Diekmann B (2002) Late quaternary variability of the ocean circulation in the southeastern South Atlantic inferred from terrigenous sediment record of a drift deposit in the southern Cape Basin (ODP Site 1089). Palaeogeogr Palaeoclimatol Palaeoecol 182:287–303

    Article  Google Scholar 

  • Lash GG, Blood D (2004) Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, upper Devonian Rhinestreet black shale, western New York. Chem Geol 206:407–424

    Article  Google Scholar 

  • Liu Z, Trentesaux A, Clemens SC, Colin C, Wang P, Huang B, Boulay S (2003) Clay mineral assemblages in northern South China Sea: implications for East Asian monsoon evolution over the past 2 million years. Mar Geol 201:133–146

    Article  Google Scholar 

  • Lourens LJ, Antonarakou A, Hilgen FJ, Van Hoof AAM, Vergnaud-Grazzini C, Zachariasse WJ (1996) Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 11:391–413

    Article  Google Scholar 

  • Luff R, Greinert J, Wallmann K, Klaucke I, Suess E (2005) Simulation of long-term feedbacks from authigenic carbonate crust formation at cold vent sites. Chem Geol 216:157–174

    Article  Google Scholar 

  • Mattioli E, Pittet B (2002) Contribution of calcareous nannoplankton to carbonate deposition: a new approach applied to the lower Jurassic of central Italy. Mar Micropaleontol 45:175–190

    Article  Google Scholar 

  • Melim LA, Anselmetti FS, Eberli GP (2001) The importance of pore type on permeability of neogene carbonates, Great Bahama Bank. In: Ginsburg RN (ed) Subsurface geology of a prograding carbonate platform margin, Great Bahama Bank: results of the Bahamas drilling project, vol 70. SEPM Special Publication, CA, pp 217–238

  • Melim LA, Swart PK, Maliva RG (1995) Meteoric-like fabrics forming in marine waters: implications for the use of petrography to identify diagenetic environments. Geology 23:755–758

    Article  Google Scholar 

  • Melim LA, Westphal H, Swart PK, Eberli GP, Munnecke A (2002) Questioning carbonate diagenetic paradigms: evidence from the neogene of the Bahamas. Mar Geol 185:27–53

    Article  Google Scholar 

  • Milankovitch M (1941) Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Akad Royale Serbe 133:1–633

    Google Scholar 

  • Möller NK, Kvingan K (1988) The genesis of nodular limestones in the Ordovician and Silurian of the Oslo region. Sedimentology 35:405–420

    Article  Google Scholar 

  • Morse JW, Zullig JJ, Bernstein LD, Miller FJ, Milne P, Mucci A, Choppin GR (1985) Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas. Am J Sci 285:147–185

    Article  Google Scholar 

  • Mullins HT, Neumann AC, Wilber RJ, Boardman MR (1980) Nodular carbonate sediment on Bahamian slopes: possible precursors to nodular limestones. J Sediment Petrol 50:117–131

    Google Scholar 

  • Munnecke A (1997) Bildung mikritischer Kalke im Silur auf Gotland. Courier Forschungsinstitut Senckenberg 198:1–132

    Google Scholar 

  • Munnecke A, Samtleben C (1996) The formation of micritic limestones and the development of limestone–marl alternations in the Silurian of Gotland, vol 34. Facies, Sweden, pp 159–176

  • Munnecke A, Westphal H (2004) Shallow-water aragonite recorded in bundles of limestone–marl alternations—the upper Jurassic of SW Germany. Sediment Geol 64:191–202

    Article  Google Scholar 

  • Munnecke A, Westphal H (2005) Variations in primary aragonite, calcite, and clay in fine-grained calcareous rhythmites of Cambrian to Jurassic age—an environmental archive? Facies 51:592–607

    Article  Google Scholar 

  • Munnecke A, Westphal H, Elrick M, Reijmer JJG (2001) The mineralogical composition of precursor sediments of calcareous rhythmites: a new approach. Int J Earth Sci 90:795–812

    Article  Google Scholar 

  • Munnecke A, Westphal H, Reijmer JJG, Samtleben C (1997) Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44:977–990

    Google Scholar 

  • Noble JPA, Howells KDM (1974) Early marine lithification of the nodular limestones in the Silurian of New Brunswick. Sedimentology 21:597–609

    Article  Google Scholar 

  • Pasquier J-B, Strasser A (1997) Platform-to-basin correlation by high-resolution sequence stratigraphy and cyclostratigraphy (Berriasian, Switzerland and France). Sedimentology 44:1071–1092

    Article  Google Scholar 

  • Patterson WP, Walter LM (1994) Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data. Geology 22:127–130

    Article  Google Scholar 

  • Pittet B, Mattioli E (2002) The carbonate signal and calcareous nannofossil distribution in an upper Jurassic section (Balingen-Tieringen, Late Oxfordian, southern Germany). Palaeogeogr Palaeoclimatol Palaeoecol 179:71–96

    Article  Google Scholar 

  • Pittet B, Strasser A (1998) Depositional sequences in deep-shelf environments formed through carbonate-mud export from the shallow platform (Late Oxfordian, German Swabian Alb and eastern Swiss Jura). Eclogae Geol Helv 91:149–169

    Google Scholar 

  • Rachold V, Brumsack H-J (2001) Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: paleoenvironmental constraints and orbital cycles. Palaeogeogr Palaeoclimatol Palaeoecol 174:121–143

    Article  Google Scholar 

  • Reboulet S, Atrops F (1997) Quantitative variations in the Valanginian ammonite fauna of the Vocontian Basin (southeastern France) within limestone–marl cycles and within parasequence sets. Palaeogeogr Palaeoclimatol Palaeoecol 135:145–155

    Article  Google Scholar 

  • Reboulet S, Mattioli E, Pittet B, Baudin F, Olivero D, Proux O (2003) Ammonoid and nannoplankton abundance in Valanginian (early Cretaceous) limestone–marl successions from the southeast France Basin: carbonate dilution or productivity? Palaeogeogr Palaeoclimatol Palaeoecol 201:113–139

    Article  Google Scholar 

  • Reinhardt EG, Cavazza W, Patterson RT, Blenkinsop J (2000) Differential diagenesis of sedimentary components and the implication for strontium isotope analysis of carbonate rocks. Chem Geol 164:331–343

    Article  Google Scholar 

  • Ricken W (1986) Diagenetic bedding: a model for limestone–marl alternations. Springer, Berlin Heidelberg New York, pp 1–210

    Google Scholar 

  • Ricken W (1987) The carbonate compaction law: a new tool. Sedimentology 34:1–14

    Article  Google Scholar 

  • Ricken W, Hemleben C (1982) Origin of marl–limestone alternation (Oxford 2) in Southwest Germany. In: Einsele G (eds) Cyclic and event stratification. Springer, Berlin Heidelberg New York, pp 63–71

    Google Scholar 

  • Rude PD, Aller RC (1991) Fluorine mobility during early diagenesis of carbonate sediment: an indicator of mineral transformations. Geochim Cosmochim Acta 55:2491–2509

    Article  Google Scholar 

  • Sanders D (2003) Syndepositional dissolution of calcium carbonate in neritic carbonate environments: geological recognition, processes, potential significance. J Afr Earth Sci 36:99–134

    Article  Google Scholar 

  • Sarnthein M (1978) Sand deserts during glacial maximum and climatic optimum. Nature 271:43–46

    Article  Google Scholar 

  • Scholle PA, Albrechtsen T, Tirsgaard H (1998) Formation and diagenesis of bedding cycles in uppermost cretaceous chalks of the Danish field, Danish North Sea. Sedimentology 45:223–243

    Article  Google Scholar 

  • Schwarzacher W (1993) Cyclostratigraphy and the Milankovitch theory. Dev Sedimentol 52:225

    Google Scholar 

  • Schwarzacher W, Fischer AG (1982) Limestone-shale bedding and perturbations of the Earth’s orbit. In: Einsele G, Seilacher A (eds) Cyclic and event stratification. Springer, Berlin Heidelberg New York, pp 72–95

    Google Scholar 

  • Seibold E (1952) Chemische Untersuchungen zur Bankung im unteren Malm Schwabens. Neues Jahrb Geol Palaontol Abh 95:337–370

    Google Scholar 

  • Seibold E (1962) Kalk-Konkretionen und karbonatisch gebundenes magnesium. Geochim Cosmochim Acta 26:899–909

    Article  Google Scholar 

  • Seibold E, Seibold I (1953) Foraminiferenfauna eines Profils im gebankten unteren Malm Schwabens. Neues Jahrb Geol Palaontol Abh 95:337–370

    Google Scholar 

  • Semper M (1917) Schichtung und Bankung. Geol Rundsch 7:53-56

    Article  Google Scholar 

  • Shinn EA, Robbin DM (1983) Mechanical and chemical compaction in fine-grained shallow-water limestones. J Sediment Petrol 53:595–618

    Google Scholar 

  • Simon W (1939) Lithogenesis kambrischer Kalke der Sierra Morena (Spanien). Senckenb Lethaea 21:297–311

    Google Scholar 

  • Stage M (1999) Signal analysis of cyclicity in Maastrichtian pelagic chalks from the Danish North Sea. Earth Planet Sci Lett 171:75–90

    Article  Google Scholar 

  • Stage M (2001) Recognition of cyclicity in the petrophysical properties of a Maastrichtian pelagic oil field reservoir from the Danish North Sea. AAPG Bull 85:2003–2015

    Google Scholar 

  • Sujkowski ZL (1958) Diagenesis. Geol Soc Am Bull 42:2692–2717

    Google Scholar 

  • Swart PK, Guzikowski M (1988) Interstitial-water chemistry and diagenesis of periplatform sediments from the Bahamas, ODP Leg 101. In: Austin JA, Schlager W, et al (eds) Proceedings of the ocean drilling program, vol 11. Ocean Drilling Program, College Station, TX, pp 363–388

  • Thierstein HR, Roth PH (1991) Stable isotopic and carbonate cyclicity in Lower Cretaceous deep-sea sediments: dominance of diagenetic effects. Mar Geol 97:1–34

    Article  Google Scholar 

  • Versteegh GJM (1994) Recognition of cyclic and non-cyclic environmental changes in the Mediterranean Pliocene: a palynological approach. Mar Micropaleontol 23:147–183

    Article  Google Scholar 

  • Walter LM, Bischof SA, Patterson WP, Lyons TL (1993) Dissolution and recrystallization in modern shelf carbonates: evidence from pore water and solid phase chemistry. R Soc Lond Philos Trans Ser A 344:27–36

    Google Scholar 

  • Walter LM, Burton EA (1990) Dissolution of recent platform carbonate sediments in marine pore fluids. Am J Sc 290:601–643

    Article  Google Scholar 

  • Waterhouse HK (1999) Regular terrestrially derived palynofacies cycles in irregular marine sedimentary cycles, lower Lias, Dorset, UK. J Geol Soc London 156:1113–1124

    Google Scholar 

  • Weedon GP, Jenkyns HC (1999) Cyclostratigraphy and the early Jurassic timescale: data from the Belemnite Marls, Dorset, Southern England. Geol Soc Am Bull 111:1823–1840

    Article  Google Scholar 

  • Wendler J, Gräfe K-U, Willems H (2002) Reconstruction of mid-Cenomanian orbitally forced palaeoenvironmental changes based on calcareous dinoflagellate cycts. Palaeogeogr Palaeoclimatol Palaeoecol 179:19–41

    Google Scholar 

  • Westphal H (1998) Carbonate platform slopes—a record of changing conditions. The Pliocene of the Bahamas. Lecture notes in earth science, vol 75. Springer, Berlin Heidelberg New York, pp 1–197

  • Westphal H, Munnecke A (1997) Mechanical compaction versus early cementation in fine-grained limestones: differentiation by the preservation of organic microfossils. Sediment Geol 112:33–42

    Article  Google Scholar 

  • Westphal H, Munnecke A (2003) Limestone–marl alternations—a warm-water phenomenon? Geology 31:263–266

    Article  Google Scholar 

  • Westphal H, Böhm F, Bornholdt S (2004a) Orbital frequencies in the sedimentary record: distorted by diagenesis? Facies 50:3–11

    Article  Google Scholar 

  • Westphal H, Head MJ, Munnecke A (2000) Differential diagenesis of rhythmic limestone alternations supported by palynological evidence. J Sediment Res 70:715–725

    Google Scholar 

  • Westphal H, Munnecke A, Böhm F, Bornholdt S (2006) Limestone–marl alternations in epeiric sea settings—witnesses of environmental changes, or of rhythmic diagenesis? In: Holmden C, Pratt BR (eds) Dynamics of epeiric seas: sedimentological, paleontological and geochemical perspectives: geological association of Canada Special Volume (in press)

  • Westphal H, Munnecke A, Pross J, Herrle JO (2004b) Multiproxy approach to understanding the origin of cretaceous pelagic limestone–marl alternations (DSDP Site 391, Blake-Bahama Basin). Sedimentology 51:109–126

    Article  Google Scholar 

  • Wright VP, Cherns L (2004) Are there “black holes” in carbonate deposystems? Geol Acta 2:285–290

    Google Scholar 

  • Wright VP, Cherns L, Hodges P (2003) Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211–214

    Article  Google Scholar 

Download references

Acknowledgments

The author is indebted to the Geologische Vereinigung for the Hans-Cloos-Award 2003. This contribution is the author’s response to receiving this award. The author also wants to thank the numerous colleagues who over the years have been involved in the limestone–marl research and without whom this research would not have taken place. This includes in particular Axel Munnecke, Florian Böhm, Stefan Bornholdt, Jens Herrle, Jörg Pross, John Reijmer, and Christian Samtleben, among many others. Also, the author is indebted to the many colleagues who with discussions and advice accompanied this research over the years, namely Leslie Melim, André Freiwald, Gerhard Einsele, and Werner Ricken among others. Thanks are due to Sonja Löffler for her help during preparation of this manuscript. Comments by IJES referees Werner Ricken and André Strasser greatly helped to improve this manuscript. The manuscript benefited from critical comments to an earlier version and discussions during preparation of this manuscript with Julita Biernacka, Florian Böhm, Leslie Melim, Axel Munnecke, and James Wheeley. The research presented here has been supported by the German Science Foundation DFG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hildegard Westphal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westphal, H. Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review. Int J Earth Sci (Geol Rundsch) 95, 947–961 (2006). https://doi.org/10.1007/s00531-006-0084-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-006-0084-8

Keywords

Navigation