Skip to main content
Log in

The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany

  • Original Paper
  • Published:
International Journal of Earth Sciences Aims and scope Submit manuscript

Abstract

The Rand Granite is a heterogeneous metamorphosed granitoid rock complex with numerous wallrock inclusions situated in the Moldanubian Zone at the southern margin of the Central Schwarzwald Gneiss Complex. It is a largely mylonitized elongated body and is thrust over the Badenweiler-Lenzkirch Zone forming a nappe with shear zones along its northern and southern boundaries. It comprises meta-granites, meta-trondhjemites and biotite augen gneisses derived from monzogranites to granodiorites. Mineral behaviour indicates that the magmatic body has been deformed under upper greenschist facies conditions. Nappe thrusting, which also affected the South Schwarzwald Gneiss Complex, occurred in Visean time during high-temperature / low-pressure metamorphism. Kinematic indicators in the mylonites document E- to ESE-directed nappe transport, highly transpressive relative to the trend of the nappe boundaries and the foliation. The trondhjemites formed at 351 +5/-4 Ma, predating the Variscan HT metamorphism. They have initial εNd-values of +6.6 to +6.7 and relatively low initial 87Sr/86Sr ratios (0.7042 to 0.7063), indicating a predominant mantle origin. The granites and protoliths of the biotite augen gneisses probably crystallised between 436 and 377 Ma, suggested by U-Pb zircon model ages. They are different from the trondhjemites with low initial εNd-values (−4.7 to −3.3) and higher initial 87Sr/86Sr ratios (0.7068–0.7077), indicating that large part of the Rand Granite originated from anatexis of continental crust. Internal structure of zircons from the Rand Granite reveals mixing of magmas derived from both mantle and crust sources. These new data support an interpretation that the Rand Granite developed along an active continental margin and therefore represents a possible root of a Variscan magmatic arc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7a–d
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arthaud F, Matte P (1975) Les décrochements tardi-hercyniens du Sud-Ouest de l‘Europe. Géometrie et essai de reconstitution des condition de la déformation. Tectonophysics 25:139–171

    Article  Google Scholar 

  • Altherr R (1975) Der “Randgranit” der Zone Badenweiler-Lenzkirch (Südschwarzwald): Ein anatektischer Bereich. PhD Thesis, University of Freiburg, 102 pp

  • Altherr R, Maass R (1977) Metamorphite am Südrand der Zentralschwarzwälder Gneisanatexitmasse zwischen Geschwend und Bernau. Neues Jahrb Geol Paläontol Abh 154:129–154

    Google Scholar 

  • Bachtadse V, Torsvik TH, Tait JA, Soffel HC (1995) Paleomagnetic constraints in the paleogeographic evolution of Europe during the Paleozoic. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 567–577

  • Brewer MS, Lippolt HJ (1972) Isotopische Altersbestimmungen an Schwarzwald-Gesteinen. Fortschr Mineral 50:41–50

    Google Scholar 

  • Büsch W, Mehnert KR (1995) Ein Beispiel für Granitisation im Schwarzwald? (Umdeutung der “Feldspatisationszone von Geschwend). Jh Geol Landesamt Baden-Württemberg 35:7–24

    Google Scholar 

  • Büttner S, Kruhl JH (1997) The evolution of late-Variscan high-T/low-P region: the southeastern margin of the Bohemian massif. Geol Rundsch 86:22–38

    Google Scholar 

  • Chen F (1999) Variscan and pre-Variscan geochronology of the Moldanubian zone of the Black Forest, Germany. PhD Thesis, University of Tübingen, 121 pp

  • Chen F (2002a) Garnet U-Pb and Sm-Nd isotopic systems—a case study of a mafic granulite from the Moldanubian Black Forest basement. Chin Sci Bull 47:864–868

    Google Scholar 

  • Chen F (2002b) Polymetamorphism of the Variscan basement of the Moldanubian Black Forest (Germany) documented in zircon and garnet minerals from gneisses. Chin J Geochem 21:108–119

    Google Scholar 

  • Chen F, Hegner E, Todt W (2000) Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest Germany—evidence for a Cambrian magmatic arc. Int J Earth Sci 88:791–802

    Article  CAS  Google Scholar 

  • Chen F, Siebel W, Satir M (2002a) Zircon U-Pb and Pb-isotope fractionation during stepwise HF-acid leaching and chronological implications. Chem Geol 191:155–164

    Google Scholar 

  • Chen F, Siebel W, Satir M, Terzioglu N, Saka K (2002b) Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone. Int J Earth Sci 91:469–481

    Article  CAS  Google Scholar 

  • Chen F, Todt W, Hann HP (2003) Zircon and garnet geochronology of eclogites from the Moldanubian Zone of the Black Forest Germany. J Geol 111:207–222

    Article  CAS  Google Scholar 

  • Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24

    Article  Google Scholar 

  • Cuney M, Brouand M, Stussi J-M (2001a) Le magmatisme hercynien en Vendée. Corrélation avec le socle du Poitou et l‘ouest du Massif central français. Géol Fr 1–2:117–142

    Google Scholar 

  • Cuney M, Brouand M, Stussi JM, Virlogeux D (2001b) Le complex plutonique de Charroux-Civray (Vienne): témoin du magmatisme infra-carbonifère dans le segment occidental de la chaine varisque européenne. Géol Fr 1–2:143–166

    Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry—An introduction. Springer, Berlin Heidelberg New York

  • Dörr W, Zulauf G, Fiala J, Franke W, Vejnar Z (1998) U-Pb zircon ages and structural development of metagranitoids of the Teplá crystalline complex-evidence for pervasive Cambrian plutonism within the Bohemian Massif (Czech Republic). Geol Rundsch 87:135–149

    Article  Google Scholar 

  • Echtler H, Chauvet A (1992) Carboniferous convergence and subsequent crustal extension in the southern Schwarzwald (SW Germany). Geodin Acta 5:37–49

    Google Scholar 

  • Eisbacher GH, Lüschen E, Wickert F (1989) Crustal-scale thrusting and extension in the Hercynian Schwarzwald and Vosges, central Europe. Tectonics 8:1–21

    Google Scholar 

  • Finger F, Haunschmid B, Schermaier A, von Quadt A (1992) Is zircon morphology indicative of a mantle or crustal origin of a granite? Comparison of Pupin indices with Sr and Nd isotope data of 26 Austrian granites. Mitt Österr Min Ges 137:135–137

    Google Scholar 

  • Finger F, Clemens JD (1995) Migmatization and “secondary” granitic magmas: effects of emplacement and crystallization of “primary” granitoids in southern Bohemia, Austria. Contrib Mineral Petrol 120:311–326

    Article  CAS  Google Scholar 

  • Finger F, Roberts MP, Haunschmid B, Schermaier A, Steyrer HP (1997) Variscan granitoids of central Europe: their typology potential sources and tectonothermal relations. Mineral Petrol 61:67–96

    CAS  Google Scholar 

  • Francis PW, Sparks RSJ, Hawkesworth CJ (1989) Petrology and geochemistry of volcanic rocks of the Cerro Galán caldera, northwest Argentina. Geol Mag 126:515–547

    CAS  Google Scholar 

  • Franke W (1989) Tectonostratigraphic units in the Variscan belt of Europe. Geol Soc Am Spec Paper 230, pp 67–90

  • Franke W (2000) The mid-European segment of the Variscides: tectonostratigraphic units terrane boundaries and plate tectonic evolution. In: Franke W, Haak V, Oncken O, Tanner D (eds) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc London Spec Publ 179, pp 35–61

  • Franke W, Dallmeyer RD, Weber K (1995) Geodynamic evolution. In: Dallmeyer RD, Franke W, Weber K (eds) Pre-Permian geology of Central and Eastern Europe. Springer, Berlin Heidelberg New York, pp 579–593

  • Friedel G, von Quadt A, Ochsner A, Finger F (1993) Timing of the Variscan orogeny in the southern Bohemian Massif (N-E Austria) deduced from new U-Pb zircon and monazite dating. Terra Nova 5:235–236

    Google Scholar 

  • Gebauer D, Grünenfelder M (1976) U-Pb zircon and Rb-Sr whole rock dating of low-grade metasediments, example: Montagne Noir (Southern France). Contrib Mineral Petrol 59:13–32

    CAS  Google Scholar 

  • Gruler M, Hegner E, Chen F, Loeschke J (1999) Variskische Suturen – Nd-Isotopie und Zirkonalter für oberdevonisch-unterkarbonische Grauwacken aus dem Moldanubikum des Schwarzwaldes. Eur J Mineral 11 (1):95

    Google Scholar 

  • Güldenpfennig M (1997) Geologische Neuaufnahme der Zone von Badenweiler-Lenzkirch (Südschwarzwald) unter besonderer Berücksichtigung unterkarbonischer Vulkanite und Grauwacken. Tübinger Geowiss Arb A 32:1–120

  • Güldenpfennig M (1998) Zur geotektonischen Stellung unterkarbonischer Grauwacken und Vulkanite der Zone von Badenweiler-Lenzkirch (Südschwarzwald). Z Dtsch Geol Ges 149:213–232

    Google Scholar 

  • Hanel M, Wimmenauer W (1990) Petrographische Indizien für einen Deckenbau im Kristallin des Schwarzwaldes. Eur J Mineral 2:89

    Google Scholar 

  • Hann HP, Sawatzki G (1997) Geologische Karte 1:25000 von Baden-Württemberg. Kurzerläuterungen zu Blatt 8213 Zell im Wiesetal. Landesamt Geologie Freiburg, 52 pp

    Google Scholar 

  • Hann HP, Sawatzki G (1998) Deckenbau und Sedimentationsalter im Grundgebirge des Südschwarzwaldes/SW-Deutschland. Z Dtsch Geol Ges 149:183–195

    Google Scholar 

  • Hann HP, Sawatzki G (2000) Neue Daten zur Tektonik des Südschwarzwaldes. Jahrb Mitt Oberrhein Geol Ver N F 82:363–376

    Google Scholar 

  • Hann HP, Sawatzki G (2003) Geologische Karte von Baden-Württemberg 1:50000, Badenweiler-Lenzkirch-Zone. Landesamt Geologie, Freiburg i Br

  • Hann HP, Sawatzki G, Vaida M (1995) Acritarchen und Chitinozoen des Ordoviziums aus metamorphen Grauwacken der Zone von Badenweiler-Lenzkirch, Schwarzwald, SW-Deutschland. Neues Jahrb Geol Paläontol Mh 1995:375–383

  • Hann HP, Chen F, Sawatzki G, Zedler H (2003) Zircon ages and geochimistry of metavolcanic layers from the northern Badenweiler-Lenzkirch Zone (southern Schwarzwald, Germany) Neues Jahrb Geol Palaentol Abh 230:307–326

    Google Scholar 

  • Hegner E, Chen F, Hann HP (2001) Chronology of basin closure and thrusting in the internal zone of the Variscan belt in the Schwarzwald, Germany: evidence from zircon ages, trace element geochemistry, and Nd isotopic data. Tectonophysics 332:169–184

    Article  CAS  Google Scholar 

  • Hegner E, Kölbl-Ebert M, Loeschke J (1998) Post-collisional Variscan lamprophyres (Black Forest Germany): 40Ar/39Ar phlogopite dating, Nd-Pb-Sr isotope, trace element characteristics. Lithos 45:394–411

    Article  Google Scholar 

  • Hoenes D (1937) Gesteine und Erzlagerstätten im Schwarzwälder Grundgebirge zwischen Schauinsland, Untermünstertal und Belchen. Neues Jahrb Mineral B 72A:265–346

    Google Scholar 

  • Hoenes D (1940) Magmatische Tätigkeit, Metamorphose und Migmatitbildung im Grundgebirge des südwestlichen Schwarzwaldes. Neues Jahrb Mineral B 76A:153–256

    Google Scholar 

  • Hubich D, Loeschke J (1993) Der Comelico-Porphyroid der westlichen Karnischen Alpen (Österreich/Italien): Stratigraphie, Petrographie, Geochemie und Zirkonmorphologie. Jahrb Geol B-A 136:351–374

  • Hughes CJ (1982) Igneous petrology. Elsevier, Amsterdam, 551 pp

  • IUGS (2002) International stratigraphic chart and explanatory note to the international stratigraphic chart. International Union of Geological Sciences

  • Kalt A (1991) Isotopengeologische Untersuchungen an Metabasiten des Schwarzwaldes und ihren Rahmengesteinen. Freiburger Geowiss Beitr 3:1–85

    Google Scholar 

  • Kalt A, Altherr R, Hanel M (2000a) The Variscan basement of the Schwarzwald. Eur J Mineral 12 (1):1–43

    Google Scholar 

  • Kalt A, Corfu F, Wijbrans J (2000b) Time calibration of a P-T path from a Variscan high-temperature low-pressure metamorphic complex (Bayerischer Wald, Germany) and the detection of inherited monazite. Contrib Mineral Petrol 138:143–163

    CAS  Google Scholar 

  • Kalt A, Grauert B, Baumann A (1994a) Rb-Sr and U-Pb isotope studies on migmatites from the Schwarzwald (Germany): constraints on isotopic resetting during Variscan high-temperature metamorphism. J Metamorph Geol 12:667–680

    CAS  Google Scholar 

  • Kalt A, Hanel M, Schleicher H (1994b) Petrology and geochronology of eclogites from the Variscan Schwarzwald (FRG). Contrib Mineral Petrol 115:287–302

    CAS  Google Scholar 

  • Klein H, Wimmenauer W (1984) Eclogites and their retrograde transformation in the Schwarzwald. Neues Jahrb Mineral Mh 1984:25–38

    Google Scholar 

  • Kneidl V, Krebs W, Mass R (1982) Über Conodontenfunde im Oberdevon von Tunau (Südschwarzwald). Neues Jahrb Geol Paläontol Mh 1982:25–35

  • Kölbl-Ebert M (1995) Paläozoische Ganggesteine (Rhyodazite/Dazite und Lamprophyre) des Südschwarzwaldes. Tübinger Geowiss Abh A 23:1–207

    Google Scholar 

  • Kosler, J, Aftalion M, Bowes DR (1993) Mid-late Devonian plutonic activity in the Bohemian Massif: U-Pb zircon isotopic evidence from the Stare Sedlo and Mirotice gneiss complex, Czech Republic. Neues Jahrb Mineral Abh 9:417–431

    Google Scholar 

  • Kossmat F (1927) Gliederung des varistischen Gebirgsbaues: Abhandl sächsisch geol Landesamtes 1:1–39

  • Krogh TE (1982) Improved accuracy of U-Pb zircon ages by the creation of more concordant systems using an air abrasion technique. Geochim Cosmochim Acta 46:637–649

    CAS  Google Scholar 

  • Krohe A (1996) Variscan tectonics of central Europe: post accretionary intraplate deformation of weak continental lithosphere. Tectonics 15:1364–1388

    Google Scholar 

  • Krohe A, Eisbacher GH (1988) Oblique crustal detachment in the Variscan Schwarzwald, southwestern Germany. Geol Rundsch 77:25–43

    Google Scholar 

  • Kröner A, Jaeckel P, Hegner E, Opletal M (2001) Single zircon ages and whole-rock Nd isotopic systematics of early Palaeozoic granitoid gneisses from the Czech and Polish Sudetes (Jizerske Hory, Krkonose Mountains and Orlice-Sneznik Complex). Int J Earth Sci 90:304–324

    Article  Google Scholar 

  • Lee JKW, Williams IS, Ellis DJ (1997) Pb, U and Th diffusion in natural zircon. Nature 390:159–161

    Article  CAS  Google Scholar 

  • Le Maitre RW (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford, 193 pp

  • Liew TC, Hofmann AW (1988) Precambrian crustal components plutonic associations plate tectonic environment of the Hercynian Fold Belt of central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138

    CAS  Google Scholar 

  • Lippolt H, Hradetzky H, Hautmann S (1994) K-Ar dating of amphibole-bearing rocks in the Schwarzwald, SW Germany: I. 40Ar/39Ar age constraints to Hercynian HT-metamorphism. Neues Jahrb Mineral Mh 1994/10:433–448

    Google Scholar 

  • Loeschke J, Güldenpfennig M, Hann HP, Sawatzki G (1998) Die Zone von Badenweiler-Lenzkirch (Schwarzwald): Eine variskische Suturzone. Z Dtsch Geol Ges 149:197–212

    Google Scholar 

  • Lüschen E, Wenzel F, Sandmeier K-J, Menges D, Rühl Th, Stiller M, Janoth W, Keller F, Söllner W, Thomas R, Krohe A, Stenger R, Fuchs K, Wilhelm H, Eisbacher G (1987) Near-vertical and wide-angle seismic surveys in the Black Forest, SW Germany. J Geophys 62:1–30

    Google Scholar 

  • Maass R (1981) The Variscan Black Forest. Geol Mijnbouw 60:137–143

    Google Scholar 

  • Maass R, Prosch T, Schuler D (1990) The zone of Badenweiler-Lenzkirch: a Carboniferous accretionary wedge? Neues Jahrb Geol Paläontol Mh 1990:717–734

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Article  CAS  Google Scholar 

  • Matte P (1986a) Tectonics and plate tectonics model for the Variscan belt of Europe. Tectonophysics 126:329–372

    Article  Google Scholar 

  • Matte P (1986b) La chaîne varisque parmi les chaînes paléozoiques péri atlantiques, modèle d‘évolution et position des grands blocs continentaux au Permo-Carbonifère. Bull Soc Géol France 8:9–24

    Google Scholar 

  • Matte P (1991) Accretionary history and crustal evolution of the Variscan belt in western Europe. Tectonophysics 196:309–337

    Article  Google Scholar 

  • Matte Ph, Maluski H, Rajlich P, Franke W (1990) Terrane boundaries in the Bohemian Massif: result of large scale Variscan shearing. Tectonophysics 177:151–170

    Article  Google Scholar 

  • Mattinson JM (2000) Low-temperature U-Pb discordance mechanisms in zircons: the role of radiation damage and fluids. 2000 Fall Meeting, San Francisco, California, EOS 81:F1361–1362

  • Montenari M, Servais T, Paris F (2000) Palynological dating (acritarchs and chitinozoans) of Lower Paleozoic phyllites from the Black Forest/southwestern Germany. C R Acad Sci Sér IIa 330:493–499

    Google Scholar 

  • Müller H (1989) Geochemistry of metasediments in the Hercynian and pre-Hercynian crust of the Schwarzwald, the Vosges and Northern Switzerland. Tectonophysics 157:97–108

    Article  Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Pap B525:79–84

    Google Scholar 

  • Parrish RR (1987) An improved micro-capsule for zircon dissolution in U-Pb geochronology. Chem Geol 66:99–102

    CAS  Google Scholar 

  • Passchier CW, Trouw RAJ (1996) Microtectonics. Springer, Berlin Heidelberg New York, 289 pp

  • Pearce JA, Harris NB, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    CAS  Google Scholar 

  • Petrakakis K (1997) Evolution of Moldanubian rocks in Austria: review and synthesis. J Metamorph Geol 15:203–222

    CAS  Google Scholar 

  • Peucat JJ, Vidal P, Godard G, Postaire B (1982) Precambrian U-Pb zircon ages in eclogites and garnet pyroxenites from South-Brittany (France): an old oceanic crust in the West European Hercynian belt? Earth Planet Sci Lett 60:70–78

    Article  CAS  Google Scholar 

  • Pharaoh TC (1999) Palaeozoic terranes and their lithospheric boundaries within the Transeuropean Suture Zone (TESZ): a review. Tectonophysics 314:17–41

    Google Scholar 

  • Pin Ch, Marini M (1993) Early Ordovician continental break-up in Variscan Europe: Nd-Sr isotope and trace element evidence from bimodal igneous associations of the Southern Massif Central, France. Lithos 29:177–196

    CAS  Google Scholar 

  • Pin Ch, Paquette J-L (1997) A mantle-derived bimodal suite in the Hercynian Belt: Nd isotope and trace element evidence for a subduction-related rift origin of the Late Devonian Brévenne metavolcanics, Massif Central (France). Contrib Mineral Petrol 2/3:222–238

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    CAS  Google Scholar 

  • Pupin JP (1985) Magmatic zoning of Hercynian granitoids in France based on zircon typology. Schweiz Mineral Petrogr Mitt 65:29–56

    CAS  Google Scholar 

  • Rolin P, Colchen M (2001) Les cisaillements hercyniens de la Vendée au Limousin. Géol Fr 1–2:87–116

  • Sawatzki G, Hann HP (1999) Geologische Karte 1:25000 von Baden Württemberg Blatt 8112 Staufen im Breisgau. Geol Landesamt, Freiburg

    Google Scholar 

  • Schaltegger U (2000) U-Pb geochronology of the Southern Black Forest Batholith (Central Variscan Belt): timing of exhumation and granite emplacement. Int J Earth Sci 88:814–828

    Article  CAS  Google Scholar 

  • Schulmann K, Ledru P, Autran A, Melka R, Lardeaux JM, Urban M, Lobkowicz M (1991) Evolution of nappes in the eastern margin of the Bohemian Massif: a kinematic interpretation. Geol Rundsch 80/1:73–92

    Google Scholar 

  • Siebel W, Chen F, Satir M (2003) Late-Variscan magmatism revisited: new implications from Pb-evaporation zircon ages on the emplacement of redwitzites and granites NE Bavaria. Int J Earth Sci 93:36–53

    Google Scholar 

  • Siebel W, Schnurr W B, Hahne K, Kraemer B, Trumbull RB, Van den Bogaard P, Emmermann R (2001) Geochemistry and isotope systematics of small- to medium-volume Neogene-Quaternary ignimbrites in the southern central Andes: evidence for derivation from andesitic sources. Chem Geol 171:213–247

    Article  CAS  Google Scholar 

  • Sittig E (1967) Zur Fazies und Verbreitung des marinen Viseum (Obers Unterkarbon) im Südschwarzwald. Oberrhein Geol Abh 16:37–43

    Google Scholar 

  • Sittig E (1969) Zur geologischen Charakterisierung des Moldanubikums am Oberrhein. Oberrhein Geol Abh 18:119–161

    Google Scholar 

  • Sittig E (1981) Evidence for wrench faulting within the Paleozoic Badenweiler-Lenzkirch-zone (Southern Schwarzwald Mountains, W-Germany). Neues Jahrb Geol Paläontol Mh 1981:431–448

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    CAS  Google Scholar 

  • Stenger R, Baatz K, Klein H, Wimmenauer W (1989) Metamorphic evolution of the pre- Hercynian basement of the Schwarzwald (Federal Republic of Germany). Tectonophysics 157:117–121

    Article  CAS  Google Scholar 

  • Streckeisen A (1974) Classification and nomenclature of plutonic rocks. Geol Rundsch 63:773–786

    CAS  Google Scholar 

  • Tait J, Bachtadse V, Franke W et al. (1997) Geodynamic evolution of the European Variscan fold belt: palaeomagnetic and geological constraints. Geol Rundsch 86:585–598

    Article  Google Scholar 

  • Teipel U, Rohrmüller J, Eichhorn R, Höll R, Wamsler S, Kennendy A (2002): U-Pb-SHRIMP-Datierungen an Zirkonen von leukokraten Gneisen und eines Metabasits aus dem Bayerischen Wald (westliche Böhmische Masse). Pangeo Austria, pp 175–176

  • Todt W (1976) Zirkon-U/Pb-Alter des Malsburg-Granits vom Südschwarzwald. Neues Jahrb Mineral Mh 1976:532–544

  • Trumbull RB, Wittenbrink R, Hahne K (1999) Evidence for Late Miocene to Recent contamination of arc andesites by crustal melts in the Chilean Andes (25–26°S) and its geodynamic implications. J South Am Earth Sci 12:135–155

    Article  Google Scholar 

  • Vaida M, Hann HP, Sawatzki G, Frisch W, Loeschke J (2000) Sedimentation ages of paragneisses and lower grade metamorphic rocks from South Schwarzwald (Variscan belt, Germany) and their significance for the reconstruction of the paleotectonic evolution. Terra Nostra 2000/1:128

    Google Scholar 

  • Vaida M, Hann HP, Sawatzki G, Frisch W, Loeschke J (2003) Ordovician and Silurian protolith ages of metamorphic rocks from the South Schwarzwald, SW Germany: a palynological study and its bearing on the Early Paleozoic geotectonic evolution. Geol Mag (in press)

  • Vavra G (1989) Die Entwicklung des penninischen Grundgebirges im östlichen und zentralen Tauernfenster der Ostalpen. Geochemie, Zirkonmorphologie, U/Pb-Radiometrie. Tübinger Geowiss Arb A6:1–149

  • von Raumer JF (1998) The Palaeozoic evolution in the Alps: from Gondwana to Pangea. Geol Rundsch 87:407–435

    Article  Google Scholar 

  • von Raumer JF, Stampfli GM (1999) The peri-Gondwana organization of pre-Variscan basement areas during the Ordovician. Acta Univ Carolinae Geol 43:105–106

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib Mineral Petrol 70:407–419

    CAS  Google Scholar 

  • Wendt I (1986) Radiometrische Methoden in der Geochronologie. Clausthaler Tektonische Hefte 23, pp 1–170

  • Werling E, Altherr R (1986) Die metamorphe und tektonische Entwicklung des Südrandes der Zentralschwarzwälder Gneismasse bei Bernau. Abstr Sympos Strukturgeol Kristallingeol Tektonik Tübingen 1986:77–80

  • Westphal M, Keller J (1995) A volcanological analysis of a late Paleozoic rhyolite in the southern Black Forest (Münstertal ignimbrite). Terra Abstr 306

  • Wiedenbeck M, Allé P, Corfu F, Griffin WL, Meier M, Oberli F, von Quadt A, Roddick JC, Spiegel W (1995) Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand Newsl 19:1–23

    CAS  Google Scholar 

  • Wilser J (1933) Das Unterkarbon von Badenweiler – Schweighof im südlichen Schwarzwald. Cbl Mineral B10:446–457

    Google Scholar 

  • Wilser J (1935) Südgerichteter Schuppenbau und carbonischer Vulkanismus im mittleren Schwarzwald. Neues Jahrb Mineral Beil B73:341–381

    Google Scholar 

  • Wimmenauer W (1984) Das prävariskische Kristallin im Schwarzwald. Fortschr Mineral 62:69–86

    CAS  Google Scholar 

  • Wimmenauer W, Hanel M (1997) Die Fortsetzung der Randgranit-Assoziation nach Nordosten und Norden. Jahrb Geol Landesamt Baden-Württemberg 37:7–24

    Google Scholar 

  • Wimmenauer W, Schreiner (1990) Geologische Karte 1:25000 von Baden-Württemberg. Erläuterungen zu Blatt 8114 Feldberg. Landesamt Geologie Freiburg, 140 pp

    Google Scholar 

  • Winkler M (1996) Genese und geodynamische Stellung der Zentralgneise im Tauernfenster. Tübinger Geowiss Arb A30:1–149

  • Zedler H (2000) Der Randgranitkomplex im südlichen Schwarzwald: Kartierung, Petrographie, Geochemie, Zirkonmorphologie, U/Pb-Zirkonalter und Neodymisotopie. Unpubl. Diploma Thesis, University of Tübingen, 138 pp

  • Ziegler PA (1986) Geodynamic model for the Palaeozoic crustal consolidation of Western and Central Europe. Tectonophysics 126:303–328

    Article  Google Scholar 

  • Ziegler PA (1989) Evolution of Laurussia. Kluwer Academic Publishers, Dordrecht

  • Ziegler PA (1990) Geological atlas of western and central Europe. Geol Soc Lond

  • Zindler A, Hart SR (1986) Chemical geodynamics. Ann Rev Earth Planet Sci 14:493–571

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Deutsche Forschungsgemeinschaft (DFG); Fr 610/14–4. P. Barbey, J.M. Stussi and J.M. Bertrand are gratefully thanked for their constructive and helpful reviews. Valuable suggestions by W. Siebel are greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Hann.

Appendix

Appendix

Analytical methods

Whole-rock powder was obtained from ca. 15 kg sample material; it was analysed for major and some trace elements on twelve samples by XRF technique. Loss on ignition (LOI) was determined after heating sample powder to 1,000 °C for one hour. Zircon mineral was separated from crushed rocks using a Wilfley table, a Frantz isodynamic separator and heavy liquids and finally handpicked under a stereo microscope. Zircon grains studied by the cathodoluminescence (CL) investigation were mounted in epoxy and polished down to expose the grain centres. CL images were obtained with a microprobe JEOL JXA-8900RL working at 15 kV. All isotopic measurements were made on a Finnigan MAT 262 mass spectrometer.

For conventional U-Pb analyses, single zircons or populations consisting of a few morphologically identical grains (up to 4 grains) were shortly washed in warm 7 N HNO3 and warm 6 N HCl prior to dissolution to remove surface contamination. A mixed 205Pb-235U-tracer solution was added to the grain(s). Dissolution was performed in PTFE vessels in a Parr acid digestion bomb (Parrish 1987) using the vapour digestion method. The bomb was placed in an oven at 210 °C for one week in 22 N HF and for one day in 6 N HCl to assure re-dissolution of the fluorides into chloride salts. Separation and purification of U and Pb were carried out on Teflon columns with an about 40-μl bed of AG1-X8 (100–200 mesh) anion exchange resin. Pb was loaded with Si-gel onto Re-filament and measured at 1,300 °C in single-filament mode, while U was loaded with 1 N HNO3 onto Re-filament and measured in double-filament configuration. Total procedural blanks were <10 pg for Pb and U. A factor of 1‰ per atomic mass unit for instrumental mass fractionation was applied to all Pb analyses, using NBS 981 as reference material. Common Pb contribution remaining after correction for tracer and blank was corrected using values of Stacey and Kramers (1975). Discordia intercept ages were calculated using regression treatment of Wendt (1986). Our own repeated measurements on natural zircons from the Phalaborwa Igneous Complex (South Africa) and from Kuehl Lake/Canada (Zircon 91500; Wiedenbeck et al. 1995) are published in Chen et al. (2002a). Using the U-Pb method, we obtained a 207Pb/206Pb age of 2,053.5±1.2 Ma for Phalaborwa zircon, similar to the age of 2,051.8±0.4 Ma obtained by Pb-Pb evaporation method (Kröner et al. 2001). Analysis of zircon 91500 gave concordant U-Pb ages of 1,065.6±2.2 Ma, consistent with the reported U-Pb age of 1,065.4±0.3 Ma obtained in different laboratories (Wiedenbeck et al. 1995).

For Nd-Sr isotope analyses, Rb-Sr and light rare-earth elements were isolated on quartz columns by conventional ion exchange chromatography with a 5-ml resin bed of AG 50W-X12 (200–400 mesh). Nd and Sm were separated from other rare-earth elements on quartz columns using 1.7-ml Teflon powder coated with HDEHP, di(2-ethylhexyl)orthophosphoric acid as cation exchange medium. Sr was loaded with Ta-HF activator solution on W-filament and measured in single-filament mode. Sm and Nd were loaded as phosphate on Re-filament and measured in double-filament configuration. The 87Sr/86Sr and 143Nd/144Nd ratios are normalized to 86Sr/88Sr=0.1194 and 146Nd/144Nd=0.7219, respectively. Repeating analyses of Ames metal and NBS987 Sr standard gave mean values of 0.512125±0.000010 for the 143Nd/144Nd ratio (n=24) and 0.710259±0.000012 for the 87Sr/86Sr ratio (n=28). Total procedural blanks were <300 pg for Sr and <50 pg for Nd. Further details on analytical techniques are given in Chen et al. (2000, 2002b).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hann, H.P., Chen, F., Zedler, H. et al. The Rand Granite in the southern Schwarzwald and its geodynamic significance in the Variscan belt of SW Germany. Int J Earth Sci (Geol Rundsch) 92, 821–842 (2003). https://doi.org/10.1007/s00531-003-0361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00531-003-0361-8

Keywords

Navigation